全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

微纤化纤维素/线性低密度聚乙烯复合材料
Microfibrillated cellulose/linear low density polyethylene composite

DOI: 10.13801/j.cnki.fhclxb.20190412.002

Keywords: 微纤化纤维素,分散性,冷冻干燥,微型锥形双螺杆挤出机,力学性能
microfibrillated cellulose
,dispersibility,freeze-drying,miniature conical twin screw extruder,mechanical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

微纤化纤维素(MFC)具有优良的力学性能,常被用作增强体制备复合材料,但MFC容易团聚影响其增强能力。本研究对MFC进行低温冷冻干燥处理(FDMFC),用微型锥形双螺杆挤出机将FDMFC与线性低密度聚乙烯(LLDPE)熔融复合,并用热压-冷压的方式制备FDMFC/LLDPE复合材料,对其力学性能、动态热力学性能(DMA)、热分解过程及冷冻干燥处理的FDMFC在LLDPE基体中的分散状态进行了测试。结果表明:相对于未冷冻干燥处理的MFC,FDMFC在LLDPE基体中的分散性得到明显改善,添加一定量的FDMFC可有效提高FDMFC/LLDPE复合材料的力学性能。当FDMFC的添加量为10wt%时,相较于纯LLDPE,FDMFC/LLDPE复合材料的拉伸强度提高了60.3%,杨氏模量提高了161.9%。DMA测试结果表明,随着FDMFC含量的增加,FDMFC/LLDPE复合材料的储能模量和损耗模量都有所提高。热重分析结果表明,FDMFC的加入提高了FDMFC/LLDPE复合材料的热解温度,最大热解温度提高了14℃。 Because of its excellent mechanical properties and reinforcing ability, microfibrillated cellulose (MFC) has become a promising candidate for developing nanocomposite. However MFC was easy to agglomerate, which affected its enhancement ability. In this study, MFC was pretreated by freeze-drying(FDMFC). Then FDMFC and linear low density polyethylene (LLDPE) were melted and compounded by a micro-cone twin screw extruder, and the FDMFC/LLDPE composite film was prepared by hot pressing-cold pressing method. The tensile property, dynamic thermomechanical performance (DMA), thermal decomposition process and dispersibility of FDMFC/LLDPE composite were evaluated. The results show that freeze-drying make FDMFC uniformly disperse in LLDPE matrix comparing with the untreated MFC. A reasonable amount of FDMFC can effectively improve the tensile property of FDMFC/LLDPE composite. When adding 10wt% FDMFC, the FDMFC/LLDPE composite increases by 60.3% in tensile strength and 161.9% in Young's modulus comparing to LLDPE. DMA test results show that both storage modulus and loss modulus of the FDMFC/LLDPE composite are improved with the increase of FDMFC content. Thermal analysis indicates that FDMFC can increase the pyrolysis temperature of the FDMFC/LLDPE composite film, and the maximum pyrolysis temperature increases by 14℃ comparing to LLDPE. 中央高校基本科研业务费(2572017ET05

References

[1]  宋京城, 蔡健. 纤维素酶在食品工业中的应用[J]. 农产品加工, 2010(3):69-71.SONG J C, CAI J. Cellulose application in food industry[J]. Academic Periodical of Farm Products Processing, 2010(3):69-71(in Chinese).
[2]  KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose:Fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005, 44(22):3358-3393.
[3]  SIRO I, PLACTKETT D. Microfibrillated cellulose and new nanocomposite materials:A review[J]. Cellulose, 2010, 17(3):459-494.
[4]  袁晔, 范子千, 沈青. 纳米纤维素研究及应用进展Ⅰ[J]. 高分子通报, 2010(2):75-79.YUAN Y, FAN Z Q, SHEN Q. Progress in research and application of nanocellulose Ⅰ[J]. Polymer Bulletin, 2010(2):75-79(in Chinese).
[5]  LIU L, CHEN Y Z, ZHANG Z J. Preparation of the micro-fibrillated cellulose and its application in the food packaging paper[J]. Applied Mechanics and Materials, 2014, 469:87-90.
[6]  CHEN W S, YU H P, LIU Y X, et al. The mechanical and it combined with enzymatic preparation methods of micro-fibrillated cellulose[J]. Advanced Materials Research, 2010, 87:393-397.
[7]  杨小慧. 微/纳米纤维素纤维增强高密度聚乙烯复合材料的研究[D]. 哈尔滨:东北林业大学, 2018. YANG X H. Study on micron/nanocellulose fiber reinforced high density polyethylene composites[D]. Harbin:Northeast Forestry University, 2018(in Chinese).
[8]  卿彦, 蔡智勇, 吴义强, 等. 纤维素纳米纤丝研究进展[J]. 林业科学, 2012, 48(7):145-152.QING Y, CAI Z Y, WU Y Q, et al. Research progress of cellulose nanofibrils[J]. Forestry Science, 2012, 48(7):145-152(in Chinese).
[9]  EHRENSTEIN G W. 聚合物材料:结构·性能·应用[M]. 张萍, 赵树高, 译. 北京:化学工业出版社, 2007.EHRENSTEIN G W. Polymeric Materials:Structure·Properties·Applications[M]. ZHANG P, ZHAO S G, trans. Beijing:Chemical Industry Press, 2007(in Chinese).
[10]  李晶晶, 宋湛谦, 李大纲, 等. 棉花纳米纤维素增强木塑复合材料[J]. 高分子材料科学与工程, 2015, 31(3):142-146.LI J J, SONG Z Q, LI D G, et al. Cotton nanocellulose reinforced wood-plastic composites[J]. Polymer Materials Science & Engineering, 2015, 31(3):142-146(in Chinese).
[11]  CHITBANYONG K, PITIPHATHARAWORACHOT S, PISUTPICHED S. Characterization of bamboo nanocellulose prepared by TEMPO mediated oxidation[J]. Bioresources, 2018, 13(2):4440-4454.
[12]  LIN N, HUANG J, CHANG P R, et al. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid)[J]. Carbohydrate Polymers, 2012, 83(4):1834-1842.
[13]  REN W, ZHANG D, WANG G, et al. Mechanical and thermal properties of bamboo pulp fiber reinforced polyethylene composites[J]. Bioresources, 2014, 9(3):4117-4127.
[14]  郝建秀, 王海刚, 王伟宏, 等. 利用弹性体增韧木粉/HDPE复合材料[J]. 复合材料学报, 2016, 33(5):976-983.HAO J X, WANG H G, WANG W H, et al. Using elastomers to tough wood powder/HDPE composites[J]. Acta Materiae Compositae Sinica, 2016, 33(5):976-983(in Chinese).
[15]  LU Y, CUEVA M C, LARA CURZIO E, et al. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine functionalization[J]. Carbohydrate Polymers, 2015, 131:208-217.
[16]  AGUSTIN M B, NAKATSUBO F, YANO H. The thermal stability of nanocellulose and its acetates with different degree of polymerization[J]. Cellulose, 2016, 23(1):451-464.
[17]  孙佳佳. 离子液体改性微晶纤维素对高乙烯基溶聚丁苯橡胶性能的影响研究[D]. 青岛:青岛科技大学, 2014.SUN J J. Effect of ionic liquid modified microcrystalline cellulose on the properties of high vinyl polymerized styrene butadiene rubber[D]. Qingdao:Qingdao University of Science and Technology, 2014(in Chinese).
[18]  杨文忠, 伍杰锋, 冯润财, 等. 聚乙烯薄膜加工方法及BOPE新产品[J]. 塑料工业, 2013, 41(3):116-119.YANG W Z, WU J F, FENG R C, et al. Processing of polyethylene film and new products of BOPE[J]. Plastics Industry, 2013, 41(3):116-119(in Chines).
[19]  宋美丽, 谷宇, 田广华, 等. 聚乙烯薄膜的性能及应用综述[J]. 合成材料老化与应用, 2018, 47(3):115-118, 124.SONG M L, GU Y, TIAN G H, et al. Review of properties and applications of polyethylene films[J]. Aging and Application of Synthetic Materials, 2018, 47(3):115-118, 124(in Chinese).
[20]  中国国家标准化管理委员会. 塑料拉伸性能的测定第2部分:模塑和挤塑塑料的试验条件:GB/T 1040.2-2006[S]. 北京:中国标准出版社, 2006.Standardization Administration of the People's Republic of China. Plastics determination of tensile properties Part 2:Test conditions for moulding and extrusion plastics:GB/T 1040.2-2006[S]. Beijing:China Standards Press, 2006(in Chinese).
[21]  NISHIYAMA Y, SUGIYYAMA J, CHANZY H, et al. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction[J]. Journal of the American Chemical Society, 2003, 125(47):14300-14306.
[22]  唐丽荣, 黄彪, 李玉华, 等. 纳米纤维素超微结构的表征与分析[J]. 生物质化学工程, 2010, 44(2):1-4.TANG L R, HUANG B, LI Y H, et al. Characterization and analysis of ultrastructure of nanocellulose[J]. Biomass Chemical Engineering, 2010, 44(2):1-4(in Chinese).
[23]  OUN A A, RHIM J W. Characterization of nanocelluloses isolated from ushar (calotropis procera) seed fiber:Effect of isolation method[J]. Materials Letters, 2016, 168:146-150.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133