|
- 2019
纳米SiO2改性轻骨料混凝土性能
|
Abstract:
纳米SiO2(NS)具有极强火山灰活性、晶核作用和填充效应,因此用NS改善水泥基材料性能成为众多学者研究的热点。本课题对不同掺量的NS对轻骨料混凝土强度及耐久性的改性效果进行了研究。通过测试轻骨料混凝土的力学性能(抗压和抗折)和氯离子渗透性能及利用SEM和EDS测试分析了NS对混凝土宏观和微观结构的影响。研究结果表明:在适当的掺量下,NS能够有效地提高轻骨料混凝土的力学性能,其中28 d的抗压强度和抗折强度比空白组混凝土分别提高了21.6%和46.2%。氯离子渗透的结果表明,轻骨料混凝土的抗氯离子渗透性能随着掺量的增加而呈线性增强。混凝土界面过渡区(ITZ)也发生了显著变化,其厚度减小,形貌也更加致密。ITZ的钙硅比随着NS掺量增加而减小,说明该区域内水化产物C-S-H凝胶增多,Ca(OH)2被消耗,从而形成致密的过渡区,有利于强度提高。 Nano-SiO2(NS) has very strong pozzolanic activity, nucleation effect and filling effect, so using nano-SiO2 to improve the performance of cement-based materials has become a hot research topic of many scholars. This topic studied the effect of different dosage of NS on the strength and durability of lightweight aggregate concrete. The effects of NS on the macrostructure and microstructure of concrete were summarized and analyzed by testing the mechanical properties (compressive and flexural resistance) and chloride ion permeability of lightweight aggregate concrete, as well as the SEM and EDS test methods. The results show that NS can effectively improve the mechanical properties of lightweight aggregate concrete at appropriate dosage. The compressive strength and flexural strength of 28 d were 21.6% and 46.2% higher than that of the blank group concrete respectively. The results of chloride ion penetration show that the resistance to chloride ion permeability of lightweight aggregate concrete increases linearly with the increase of the content of nano-SiO2. Concrete interface transition zone (ITZ) has also undergone significant changes, its thickness decreases, the morphology is also more dense. The ratio of calcium to silicon in ITZ decreases with the increase of the amount of NS, which indicates that the C-S-H gel of hydration product increases and Ca(OH)2 is consumed in this region, resulting in a dense transition zone, which is conducive to the increase of the strength. 国家自然科学基金(51678367
[1] | 刘忆, 刘卫华, 訾树燕, 等. 纳米材料的特殊性能及其应用[J]. 沈阳工业大学学报, 2000, 22(1):21-24. LIU Yi, LIU Weihua, ZI Shuyan, et al. Special properties and application of nano-structured materials[J]. Journal of Shenyang University of Technology, 2000, 22(1):21-24(in Chinese). |
[2] | MUKHARJEE B B, BARAI S V. Influence of nano-silica on the properties of recycled aggregate concrete[J]. Construction & Building Materials, 2014, 55(2):29-37. |
[3] | 刘刚, 徐安, 曾力. 纳米二氧化硅在混凝土中的应用研究进展[J]. 混凝土, 2014(10):66-69. LIU Gang, XU An, ZENG Li. Research progress of application of nano-SiO2 in concrete[J]. Concrete, 2014(10):66-69(in Chinese) |
[4] | 徐子芳, 张明旭, 徐初阳. 纳米级SiO2改性水泥基材料作用机理分析[J]. 矿冶工程, 2007, 27(3):99-102. XU Zifang, ZHANG Mingxu, XU Chuyang. Reaction mechanism analyses of cement-based composite materials modified by nano-silica[J]. Mining and Metallurgical Engineering, 2007, 27(3):99-102(in Chinese). |
[5] | WU K, SHI H, XU L, et al. Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties[J]. Cement and Concrete Research, 2016, 79:243-256. |
[6] | 王东旭, 吕燕, 红武亮, 等. 界面过渡区对混凝土力学性能的影响研究综述[J]. 人民黄河, 2014, 36(3):120-122. WANG Dongxu, LV Yan, HONG Wuliang. Interface transition zone on concrete mechanics properties of research review[J]. Yellow River, 2014, 36(3):120-122(in Chinese). |
[7] | 杨淑雁, 张强, 万惠文, 等, 引气高性能混凝土显微结构研究[J]. 武汉理工大学学报, 2008, 30(9):16-18, 23. YANG Shuyan, ZHANG Qiang, WAN Huiwen, et al. Research on microstructures of air-entraining high performance concrete[J]. Journal of Wuhan University of Technology, 2008, 30(9):16-18, 23(in Chinese). |
[8] | ELSHARIEF A, COHEN M D, OLEK J. Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone[J]. Cement and Concrete Research, 2003, 33(11):1837-1849. |
[9] | POON C S, SHUI Z H, LAM L. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates[J]. Construction and Building Materials, 2004, 18(6):461-468. |
[10] | 崔宏志, 邢锋. 用SEM和FT-IR研究轻骨料混凝土界面过渡区[J]. 混凝土, 2010(1):18-20. CUI Hongzhi, XING Feng. Study of interfacial transition zone of lightweight a ggregate concrete by using SEM and FT-IR[J]. Concrete, 2010(1):18-20(in Chinese). |
[11] | 谈淑咏, 朱义和, 江静华, 等. 纳米金属材料概述(2)[J]. 机械制造与自动化, 2000(2):46-48. TAN Shuyong, ZHU Yihe, JIANG Jinghua, et al. An outline of nanometer metal materials(2)[J]. Machine Building & Automation, 2000(2):46-48(in Chinese). |
[12] | 燕兰, 邢永明. 纳米SiO2对钢纤维/混凝土高温后力学性能及微观结构的影响[J]. 复合材料学报, 2013, 30(3):133-141. YAN Lan, XING Yongming. Influence of nano-SiO2 on mechanical properties and microstructure of steel fiber reinforced concrete after heating at high temperatures[J]. Acta Materiae Compositae Sinica, 2013, 30(3):133-141(in Chinese). |
[13] | 高英力, 邹超, 陈家宝. 纳米SiO2粉煤灰轻骨料混凝土抗离析性能的试验研究[J]. 硅酸盐通报, 2015, 34(6):1513-1519. GAO Yingli, ZOU Chao, CHEN Jiabao. Segregation resistance of nano SiO2 fly ash lightweight aggregate concrete[J]. Bulletin of The Chinese Ceramic Society, 2015, 34(6):1513-1519(in Chinese). |
[14] | 朱靖塞, 许金余, 白二雷, 等. 复合纳米材料对混凝土动态力学性能的影响[J]. 复合材料学报, 2016, 33(3):597-605. ZHU Jingsai, XU Jinyu, BAI Erlei, et al. Effects of compo-site nanomaterials on dynamic mechanical properties of concretes[J]. Acta Materiae Compositae Sinica, 2016, 33(3):597-605(in Chinese). |
[15] | 张县云, 宋学锋, 高瑞. 纳米硅溶胶对水泥砂浆力学性能的影响及其作用机理初探[J]. 硅酸盐通报, 2014.33(3):589-592. ZHANG Xianyun, SONG Xuefeng, GAO Rui. Effect of nano-silica Sol on mechanical properties of cement mortar and the action mechanism[J]. Bulletin of The Chinese Ceramic Society, 2014, 33(3):589-592(in Chinese). |
[16] | 侯学彪, 黄丹, 王委. 掺纳米SiO2高性能混凝土研究进展[J]. 混凝土, 2013(3):5-9. HOU Xuebiao, HUANG Dan, WANG Wei. Recent progress on high performance concrete with nano-SiO2 particles[J]. Concrete, 2013(3):5-9(in Chinese). |
[17] | DU H, DU S, LIU X. Effect of nano-silica on the mechanical and transport properties of lightweight concrete[J]. Construction and Building Materials, 2015, 82:114-122. |
[18] | VARGAS P, RESTREPO-BAENA O, TOBíN J I. Microstructural analysis of interfacial transition zone (ITZ) and its impact on the compressive strength of lightweight concretes[J]. Construction and Building Materials, 2017.137:381-389. |
[19] | HE Y, ZHANG X, ZHANG Y, et al. Effects of particle characteristics of lightweight aggregate on mechanical properties of lightweight aggregate concrete[J]. Construction and Building Materials, 2014, 72(7):270-282. |
[20] | PANG B, ZHOU Z, CHENG X, et al. ITZ properties of concrete with carbonated steel slag aggregate in salty freeze-thaw environment[J]. Construction and Building Materials, 2016.114:162-171. |
[21] | DU H, DU S, LIU X. Durability performances of concrete with nano-silica[J]. Construction and Building Materials, 2014, 73:705-712. |
[22] | ATMACA N, ABBAS M L, ATMACA A. Effects of nano-silica on the gas permeability, durability and mechanical properties of high-strength lightweight concrete[J]. Construction and Building Materials, 2017, 147:17-26. |
[23] | 梁乃兴, 曹源文, 姚红云. 聚合物改性水泥混凝土路用性能研究[J]. 公路交通科技, 2005, 22(3):21-23. LIANG Naixing, CAO Yuanwen, YAO Hongyun. Research on performance of cement concrete modified with styrene-butadiene latex[J]. Journal of Highway and Transportation Research and Development, 2005, 22(3):21-23(in Chinese). |