|
- 2019
基于Weibull模型的C/C复合材料销钉剪切强度分布及本构关系
|
Abstract:
针对C/C复合材料销钉力学性能各向异性的特点,开展基于Weibull分布模型的C/C销钉剪切强度分布及本构关系研究,探讨不同剪切方向对C/C销钉剪切强度和剪切本构的影响规律。基于两参数Weibull分布模型,采用最小二乘法获得不同剪切方向上剪切强度的分布规律;根据C/C复合材料损伤失效机制,采用基于Weibull分布的弹性损伤模型表征材料的剪切本构关系,并通过试验数据获取损伤模型中的参数。结果表明:通过Kolmogorov-Smirnov拟合优度检验,两参数Weibull分布模型能较好地表征C/C销钉剪切强度的分布规律;沿45°方向剪切的C/C销钉,其剪切强度最高;随着剪切角度的增大销钉剪切刚度逐渐降低,从0°方向上的19.46 kN/mm下降到90°方向上的12.70 kN/mm。 Due to the anisotropic characteristics of C/C composite pins, the loading direction effects on the shear strength and shear constitutive model based on the Weibull model were studied. Then the Weibull model was invited to analyze the statistic distribution of the shear strength, and the parameters were estimated by the least square method. Based on the failure mechanism of C/C composites, an elastic-damage constitutive model with Weibull distribution was proposed, and the parameters were estimated with experimental data. The results show that the two-parameter Weibull function can be used to characterize the statistic distribution of shear strength according to the Kolmogorov-Smirnov test, and the C/C composite pins show the highest shear strength along the 45° direction. The shear stiffness of C/C composite pins decreases with the increasing shear angle, which decreases from 19.46 kN/mm (0° direction) to 12.70 kN/mm (90° direction). 国家自然科学基金(11572086;11802059);江苏省自然科学基金(BK20170022;BK20170656
[1] | LAN F T, LI K Z, LI H J, et al. Joining of carbon/carbon composites for nuclear applications[J]. Journal of Materials Science, 2009, 44(14):3747-3750. |
[2] | ZHANG Y, ZHANG L, ZHANG J, et al. Effects of z-pin's porosity on shear properties of 2D C/SiC z-pinned joint[J]. Composite Structures, 2017, 173:106-114. |
[3] | BASU B, TIWARI D, KUNDU D, et al. Is Weibull distribution the most appropriate statistical strength distribution for brittle materials?[J]. Ceramics International, 2009, 35(1):237-246. |
[4] | 李辉, 张立同, 曾庆丰, 等. 2D C/SiC复合材料的可靠性评价[J]. 复合材料学报, 2007, 24(4):95-100. LI H, ZHANG L T, ZENG Q F, et al. Reliability analysis of 2D C/SiC composite[J]. Acta Materiae Compositae Sinica, 2007, 24(4):95-100(in Chinese). |
[5] | MAIMI P, CAMANHO P P, MAYUGO J A, et al. A continuum damage model for composite laminates:Part Ⅱ-Computational implementation and validation[J]. Mechanics of Materials, 2007, 39(10):909-919. |
[6] | RIBEIRO M L, TITA V, VANDEPITTE D. A new damage model for composite laminates[J]. Composite Structures, 2012, 94(2):635-642. |
[7] | MASSEY J F J. The Kolmogorov-Smirnov test for goodness of fit[J]. Journal of the American statistical Association, 1951, 46(253):68-78. |
[8] | NANDLALL D, WILLIAMS K, VAZIRI R. Numerical simulation of the ballistic response of GRP plates[J]. Composites Science and Technology, 1998, 58:1463-1469. |
[9] | SHARMA R, RAVIKUMAR N L, DASGUPTA K, et al. Advanced carbon-carbon composites:Processing properties and applications[M]. Berlin:Springer Berlin Heidelberg, 2017:315-367. |
[10] | 黄启忠. 高性能炭/炭复合材料的制备, 结构与应用[M]. 长沙:中南大学出版社, 2010. HUANG Q Z. Fabrication, structure and application of high-performance carbon/carbon composites[M]. Changsha:Central South University, 2010(in Chinese). |
[11] | KOGO Y, KIKKAWA A, SAITO W, et al. Comparative study on tensile fracture behavior of monofilament and bundle C/C composites[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(12):2241-2247. |
[12] | 王杰, 李克智, 郭领军, 等. 炭布叠层穿刺C/C复合材料螺栓连接件微观组织和力学性能[J]. 固体火箭技术, 2012, 35(2):248-252. WANG J, LI K Z, GUO L J, et al. Microstructure and mechanical properties of C/C composite bolts[J]. Journal of Solid Rocket Technology, 2012, 35(2):248-252(in Chinese). |
[13] | 李崇俊, 金志浩, 崔万继, 等. 碳/碳销钉研究[J]. 宇航材料工艺, 2000, 30(2):37-40. LI C J, JIN Z H, CUI W J, et al. Carbon-carbon pin bolts[J]. Aerospace Materials & Technology, 2000, 30(2):37-40(in Chinese). |
[14] | 严科飞, 张程煜, 乔生儒, 等. C/C复合材料室温面内剪切强度分布[J]. 机械强度, 2012, 34(6):912-915. YAN K F, ZHANG C Y, QIAO S R, et al. Statistical distribution of in-plane shear strength of C/C composite at room temperature[J]. Journal of Mechanical Strength, 2012, 34(6):912-915(in Chinese). |
[15] | XU Y, CHENG L, ZHANG L, et al. Optimization of sample number for Weibull function of brittle materials strength[J]. Ceramics International, 2001, 27(2):239-241. |
[16] | MAIMI P, CAMANHO P P, MAYUGO J A, et al. A continuum damage model for composite laminates:Part I-Constitutive model[J]. Mechanics of Materials, 2007, 39(10):897-908. |
[17] | MEER F P V D, OLIVER C, SLUYS L J. Computational analysis of progressive failure in a notched laminate including shear nonlinearity and fiber failure[J]. Composites Science and Technology, 2010, 70(4):692-700. |
[18] | FLATSCHER T, PETTERMANN H E. A constitutive model for fiber-reinforced polymer plies accounting for plasticity and brittle damage including softening-implementation for implicit FEM[J]. Composite Structures, 2011, 93(9):2241-2249. |
[19] | 陈静芬. 基于弹塑性损伤本构模型的复合材料层合板破坏荷载预测[J]. 复合材料学报, 2017, 34(4):773-785. CHEN J F. Failure loads prediction of composite laminates using a combined elastoplastic damage model[J]. Acta Materiae Compositae Sinica, 2017, 34(4):773-785(in Chinese). |
[20] | 张立同, 成来飞. 自愈合陶瓷基复合材料制备与应用基础[M]. 北京:化学工业出版社, 2015:39-49. ZHANG L T, CHENG L F. Fabrication and application of self-healing ceramic matrix composites[M]. Beijing:Chemical Industry Press, 2015:39-49(in Chinese). |
[21] | LIU M S, LI Y L, XU F, et al. Dynamic compressive mechanical properties and a new constitutive model of 2D-C/SiC composites[J]. Materials Science and Engineering A, 2008, 489(1):120-126. |
[22] | 谢军波, 方国东, 陈振, 等. 针刺C/C-SiC复合材料剪切非线性本构关系[J]. 复合材料学报, 2016, 33(7):1507-1514. XIE J B, FANG G D, CHEN Z, et al. Shear nonlinear constitutive relationship of needled C/C-SiC composite[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1507-1514(in Chinese). |