全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

面内压缩超轻质点阵夹芯板的优化、 试验与仿真
Optimization, experiment and simulation of lightweight lattice sandwich plates under in-plane compression load

DOI: 10.13801/j.cnki.fhclxb.20180530.002

Keywords: 点阵夹芯板,面内压缩,失效,最小质量优化,激光选区熔融,有限元方法
lattice sandwich plate
,in-plane compression,failure,minimum mass optimization,selective laser melting,finite element method

Full-Text   Cite this paper   Add to My Lib

Abstract:

为揭示点阵材料在航空航天工程中的应用潜力,对承受面内压缩载荷点阵夹芯板的力学行为进行了研究。基于夹芯板整体欧拉失稳、剪切失稳、格间局部失稳、跨格局部失稳和应力破坏多种理论失效模式,引入面板厚度、厚度方向的点阵层数、点阵杆件长度、截面尺寸、倾斜度、胞元长细比等优化变量,推导了点阵夹芯板的最小质量优化设计方法。同时利用激光选取熔融(SLM)增材制造工艺生产了点阵夹芯板试验件。随后,采用有限元方法对试验结果进行了仿真分析,两者误差在10%以内,证实了数值方法的准确性。最终对初始设计和优化设计方案进行了数值分析,发现优化方案在保持相同承载力的条件下,实现结构减重16.6%,验证了优化设计方法的有效性。同时,试验与仿真的一致性有力地证明了增材制造工艺在点阵夹芯结构制造方面的可行性。 In order to reveal the potential application in aeronautic and astronautic engineering, the lattice sandwich plate subjected to in-plane compression was focused on and its mechanical behaviors were studied. Based on the failure modes including Euler buckling, shear buckling, face dimpling, face wrinkling and face crushing, a minimum mass optimization method was proposed for the lattice sandwich plate, where six optimization variables were considered, including the panel thickness, the length of rod, the size of rod cross-section, the inclined angle of rod and the wideness ratio of cell. The experimental specimens of the lattice sandwich plate were fabricated based on selective laser melting(SLM) additive manufacturing process. Then, finite element method was validated by comparison with the experimental results, and the error is less than 10%. Finally, both the initial and the optimal designs were analyzed by finite element method. Numerical results show that the optimal design can reduce 16.6% of the mass under the identical compression load, which proves the availability of the optimization method. Moreover, the consistency between the experiments and numerical result proves that additive manufacturing can be used to fabricate the lattice sandwich structure with stable mechanical properties. 国家重点研发计划(2017YFB1102800);国家自然科学基金(11602147

References

[1]  冀宾, 李昊, 史立涛, 等. 轴压载荷下的运载火箭主结构构型优化设计[J]. 强度与环境, 2016, 43(2):47-53. JI B, LI H, SHI L T, et al. Optimal design for configuration of primary structure under axial compression load in launch vehicle[J]. Structure & Environment Engineering, 2016, 43(2):47-53(in Chinese).
[2]  《世界航天运载器大全》编委会. 世界航天运载器大全[M]. 北京:中国宇航出版社, 2007:514, 1070-1072. WORLD SPACE VEHICLE EDITORIAL BOARD. World space vehicle[M]. Beijing:China Astronautic Publishing House, 2007:514, 1070-1072(in Chinese).
[3]  李茂, 韩涵, 唐杰, 等. 大温差隔热共底在运载贮箱中的应用研究[J]. 上海航天, 2016, 33(S1):43-49. LI M, HAN H, TANG J, et al. Application of PMI foam cored sandwich bulkhead tank in launch vehicle[J]. Aerospace Shanghai, 2016, 33(S1):43-49(in Chinese).
[4]  GOODIER J N. Cylindrical buckling of sandwich plates[J]. Journal of Applied Mechanics, 1946, 13:253-260.
[5]  PLANTEMA F J. Sandwich construction[M]. New York:John Wiley & Sons, 1966.
[6]  QUEHEILLALT D T, WADLEY H N G, Pyramidal lattice truss structures with hollow trusses[J]. Materials Science and Engineering A, 2005, 397(1-2):132-137.
[7]  ZHANG Q C, HAN Y J, CHEN C Q, et al. Ultralight X-type lattice sandwich structure (I):Concept, fabrication and experimental characterization[J]. Science in China Series E:Technological Sciences, 2009, 52(8):2147-2154.
[8]  CERARDI A, CANERI M, MENEGHELLO R, et al. Mechanical characterization of polyamide cellular structures fabricated using selective laser sintering technologies[J]. Materials & Design, 2013, 46:910-915.
[9]  COTE F, BIAGI R, BART-SMITH H, et al. Structural response of pyramidal core sandwich columns[J]. International Journal of Solids and Structures, 2007, 44(10):3533-3556.
[10]  FENG L J, WU L Z, YU G C, The optimum layer number of multi-layer pyramidal core sandwich columns under in-plane compression[J]. Theoretical and Applied Mechanics Letters, 2016, 6:65-68.
[11]  XIONG J, MA L, WU L, et al. Mechanical behavior and failure of composite pyramidal truss core sandwich columns[J]. Composites:Part B, 2011, 42(4):938-945.
[12]  LI M, WU L, MA L, et al. Structural response of all-composite pyramidal truss core sandwich columns in end compression[J]. Composite Structures, 2011, 93(8):1964-1972.
[13]  张醒, 冀宾, 唐杰. 新一代运载火箭全透波卫星整流罩结构设计分析与试验验证[J]. 上海航天, 2016, 33(S1):50-54. ZHANG X, JI B, TANG J, et al. Structure design analysis and test of wave-transparent payload fairing for new generation launch vehicle[J]. Aerospace Shanghai, 2016, 33(S1):50-54(in Chinese).
[14]  ALLEN H G. Analysis and design of structural sandwich panels[M]. Oxford:Pergamon Press, 1969.
[15]  HOFF N J, MAUTNER S E. The buckling of sandwich-type panels[J]. Journal of the Aeronautical Sciences, 1945, 12(3):285-297.
[16]  EVANS A G, HUTCHINSON J W, FLECK N A, et al. The topological design of multifunctional cellular metals[J]. Progress in Materials Science, 2001, 46(3-4):309-327.
[17]  DESHPANDE V S, FLECK N A, ASHBY M F. Effective properties of the octet-truss lattice material[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(8):1747-1769.
[18]  WALLACH J C, GIBSON L J. Mechanical behavior of a three-dimensional truss material[J]. International Journal of Solids and Structures, 2001, 38(40-41):7181-7196.
[19]  WANG J, EVANS A G, DHARMASENA K, et al. On the performance of truss panels with Kagomé cores[J]. International Journal of Solids and Structures, 2003, 40(25):6981-6988.
[20]  MINES R A W, TSOPANOS S, SHEN Y, et al. Drop weight impact behaviour of sandwich panels with metallic micro lattice cores[J]. International Journal of Impact Engineering, 2013, 60:120-132.
[21]  JAMSHIDINIA M, WANG L, TONG W, et al. Fatigue properties of a dental implant produced by electron beam melting (EBM)[J]. Journal of Materials Processing Technology, 2015, 226:255-263.
[22]  YIN S, WU L, NUTT S, et al. In-plane compression of hollow composite pyramidal lattice sandwich columns[J]. Journal of Composite Materials, 2014, 48(11):1337-1346.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133