|
- 2019
碳纤维负载NaTaO3光催化复合材料的制备及其性能碳纤维负载NaTaO3光催化复合材料的制备及其性能
|
Abstract:
以聚丙烯腈基碳纤维(CF)为基体,TaCl5和乙酸钠为原料,十六烷基三甲基溴化铵(CTAB)为表面活性剂,通过溶胶-凝胶法和浸渍提拉法将纳米NaTaO3薄膜负载于CF上,制备得到高效光催化特性的复合材料。采用SEM、TEM、XRD等表征了NaTaO3-CF的形貌和结构,以罗丹明B (RhB)溶液为目标降解物,测试了NaTaO3-CF复合材料的光催化性能。结果表明:所制备的NaTaO3-CF复合材料具备良好光催化活性和重复使用稳定性,暗中吸附30 min、光照80 min时,对RhB的去除率为99.35%,5次循环使用后,去除率为89.17%,其光催化反应过程符合伪一级反应动力学模型。 The NaTaO3-carbon fiber (CF) composite with excellent photocatalytic activity was prepared through sol-gel method combined with dip-coating technique by using TaCl5 and sodium acetate as the raw materials, cetyl trimethyl ammonium bromide (CTAB) as the surfactant. The morphology, crystalline phase and photocatalytic properties of NaTaO3-CF composites were investigated by SEM, TEM and XRD. The dye rhodamine B (RhB) was used as a model contaminant to evaluate the photocatalytic activity of NaTaO3-CF composites. The results indicate that NaTaO3-CF composites have excellent photocatalytic performance and the removal ratio of RhB is achieved 99.35% under dark adsorption for 30 min and irradiation for 80 min. The NaTaO3-CF composites also present favorable stability and photocatalytic activity after recycling, the removal ratio of RhB is remained above 89.17% after five cycles. The photodegradation of RhB is in accordance with the pseudo first order reduction kinetics model and could be described by this kinetic model. 浙江省自然科学基金(Y406310
[1] | 程冰, 王秀峰, 伍媛婷. 金红石型纳米TiO2粉体的制备及其分散[J]. 电子元件与材料, 2005, 24(5):1-4. CHENG B, WANG X F, WU Y T. Preparation of rutile titanium dioxide nano-particles in aqueous solution and its dispersion[J]. Electronic Components &Materials, 2005, 24(5):1-4(in Chinese). |
[2] | 胡海霞. 纳米TiO2粉体分散工艺优化[J]. 中国粉体技术, 2014, 20(02):68-71. HU H X. Optimization of dispersion process for TiO2 nano-powders[J]. China Powder Science and Technology, 2014, 20(02):68-71(in Chinese). |
[3] | 涂志江, 张宝林, 冯凌云, 等. 聚乙二醇/聚乙烯吡咯烷酮修饰的纳米Fe3O4粒子的制备与表征[J]. 化工学报, 2012, 63(12):4089-4095. TU Z J, ZHANG B L, FENG L Y. Synthesis and characterization of Fe3O4 nanoparticles coated with poly(ethylene glycol) and poly(vinyl pyrrolidone)[J]. CIESC Journal, 2012, 63(12):4089-4095(in Chinese). |
[4] | 胡海霞, 李建华. 光催化自清洁整理剂制备及在涤棉织物上的应用[J]. 丝绸, 2014, 51(06):26-30+36. HU H X, LI J H. Preparation of photocatalysis self-cleaning finishing agent and its application in polyester-cotton fabrics[J]. Journal of Silk, 2014, 51(06):26-30+36(in Chinese). |
[5] | QI L R, LI X. N-doped NaTaO3:Novel visible-light-driven photocatalysts synthesised by a sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2014, 69(3):625-629. |
[6] | SUN X M, CHEN X, DENG Z X, et al. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods[J]. Materials Chemistry and Physics, 2003, 78(1):99-104. |
[7] | KOPARDE V N, CUMMINGS P T. Phase transformations during sintering of titania nanoparticles[J]. Acs Nano, 2008, 2(8):1620-1624. |
[8] | GONG Z L, TANG D Y, GUO Y D. The fabrication and self-flocculation effect of hybrid TiO2 nanoparticles grafted with poly(N-isoprop-ylacrylamide) at ambient temperature via surface-initiated atom transfer radical polymerization[J]. Journal of Materials Chemistry, 2012, 22:16872-16879. |
[9] | 徐斌斌, 傅深渊, 刘丽娜. 掺杂型TiO2光催化研究的最新进展[J]. 化工新型材料, 2017, 45(01):38-40. XU B B, FU S Y, LIU L N. Latest progress in the research of doped TiO2 photocatalysis[J]. New Chemical Materials, 2017, 45(01):38-40(in Chinese). |
[10] | KUDO A, KATO H. Photocatalytic decomposition of water into H2 and O2 over novel photocatalyst K3Ta3Si2O13 with pillared structure consisting of three TaO6 chains[J]. Chemistry Letters, 1997, 9:867-868. |
[11] | KATO H, KUDO A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3(A=Li, Na, and K)[J]. The Journal of Physical Chemistry B, 2001, 105(19):4285-4292. |
[12] | KUDO A, NAKAGAWA S, KATO H. Overall water splitting into H2 and O2 under UV Irradiation on NiO-loaded ZnNb2O6 photocatalysts consisting of d10 and d0 ions[J]. Chemistry Letters, 1999, 11:1197-1198. |
[13] | TANG L, FENG C, DENG Y, et al. Enhanced photocatalytic activity of ternary Ag/g-C3 N4/NaTaO3 photocatalysts under wide spectrum light radiation:The high potential band protection mechanism[J]. Applied Catalysis B:Environmental, 2018, 230:102-114. |
[14] | WANG S, XU X W, LUO H, et al. Enhanced organic dye removal of the W and N co-doped NaTaO3 under visible light irradiation[J]. Journal of Alloys and Compounds, 2016, 681:225-232. |
[15] | 李小娟, 黄斌, 李小飞, 等. TiO2-Fe3O4/MIL-101(Cr)磁性复合光催化材料的制备及其光催化性能[J]. 复合材料学报, 2017, 34(7):1596-1602. LI X J, HUANG B, LI X F, et al. Preparation and photocatalytic activity of magnetic TiO2-Fe3O4/MIL-101(Cr) composites[J]. Acta Materiae Compositae Sinica, 2017, 34(7):1596-1602(in Chinese). |
[16] | 黄正宏, 许得平, 康飞宇, 等. 炭与TiO2光催化剂的复合及协同作用研究进展[J]. 中国光学与应用光学文摘, 2004(06):74. HUANG Z H, XU D P, KANG F Y, et al. Recent developments in the preparation and of a C TiO2 composite photocatalyst[J]. China Optics and Applied Optics Abstracts, 2004(06):74. |
[17] | 朱曜峰, 丁艳杰, 傅雅琴. 碳纤维负载TiO2光催化薄膜的制备及其性能[J]. 纺织学报, 2010, 31(04):1-6. ZHU Y F, DING Y J, FU Y Q. Preparation and performance of photocatalysed titanium dioxide thin film deposited on polyacrylonitile based carbon fiber[J]. Journal of Textile Research, 2010, 31(04):1-6(in Chinese). |
[18] | 李明, 杨雨佳, 郭小阳. 碳纤维增强油井水泥石的力学性能[J]. 复合材料学报, 2015, 32(3):782-788. LI M, YANG Y J, GUO X Y. Mechanical properties of carbon fiber reinforced oil well cement composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3):782-788(in Chinese). |
[19] | ZHANG J J, FANG S S, MEI J Y, et al. High-efficiency removal of rhodamine B dye in water using g-C3 N4 and TiO2 co-hybridized 3D graphene aerogel composites[J]. Separation and Purification Technology, 2018, 194:96-103. |
[20] | 黄冬根, 莫壮洪, 全水清, 等. 石墨烯/纳米TiO2复合材料的制备及光催化还原性能[J]. 复合材料学报, 2016, 33(1):155-162. HUANG D G, MO Z H, QUAN S Q, et al. Preparation and photocatalytic reduction performance of graphene/nano TiO2 composites[J]. Acta Materiae Compositae Sinica, 2016, 33(1):155-162(in Chinese). |
[21] | 傅雅琴, 金旭东, 倪庆清. 碳纤维负载Pd-TiO2光催化材料的制备及表征[J]. 稀有金属材料与工程, 2010, 39(06):1075-1078. FU Y Q, JIN X D, NI Q Q. Preparation and characterization of Pd-TiO2 photocatalytic materials supported by carbon fibers[J]. Rare Metal Materials and Engineering, 2010. 39(06):1075-1078. |
[22] | KATO H, KUDO A. New tantalate photocatalysts for water decomposition into H2 and O2[J]. Chemical Physics Letters, 1998, 295(5-6):487-492. |
[23] | KATO H, KUDO A. Photocatalytic decomposition of pure water into H2 and O2 over SrTa2O6 prepared by a flux method[J]. Chemistry Letters, 1999, 11:1207-1208. |
[24] | KATO H, KUDO A. Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts[J]. Catalysis Letters, 1999, 58(2):153-155. |
[25] | KUDO A, KATO H, NAKAGAWA S. Water splitting into H2 and O2 on new Sr2M2O7(M=Nb and Ta) photocatalysts with layered perovskite structures:factors affecting the photocatalytic activity[J]. The Journal of Physical Chemistry B, 2000, 104(3):571-575. |
[26] | LIU X, SOHLBERG K. Role of effective carrier mass in the photocatalytic efficiency of Ladoped NaTaO3[J]. Computational Materials Science, 2016, 123:1-7. |
[27] | 刘大锐. 非金属S掺杂对NaTaO3可见光下光催化性能的影响[J]. 无机材料学报, 2018, 33(04):409-415. LIU D R. Influence of Sulfur anion doping on visible-light photocatalytic activity of NaTaO3[J]. Journal of Inorganic Materials, 2018, 33(04):409-415(in Chinese). |
[28] | 刘红玲, 彭俊军, 李明, 等. 玻璃固载TiO2/纳米纤维素复合薄膜的制备及其光催化性能[J]. 复合材料学报, 2013, 30(4):163-169. LIU H L, PENG J J, LI M, et al. Preparation and photocatalytic activity of TiO2/nanocrystalline cellulose composite films coating on glass[J]. Acta Materiae Compositae Sinica, 2013, 30(4):163-169(in Chinese). |
[29] | ZHU Y F, FU Y Q, NI Q Q. Preparation and performance of photocatalytic TiO2 immobilized on palladium-doped carbon fibers[J]. Applied Surface Science, 2011, 257(6):2275-2280. |
[30] | 朱曜峰, 王艳, 傅雅琴. 二氧化钛/碳纤维多孔薄膜的制备及其催化性能[J]. 纺织学报, 2011, 32(04):23-28. ZHU Y F, WANG Y, FU Y Q. Preparation and photocatalytic performances of TiO2/carbon fiber porous film[J]. Journal of Textile Research, 2011, 32(04):23-28(in Chinese). |
[31] | HU H X, PANG B Y, ZHU Y F, et al. Preparation of titanium dioxide immobilized on carbon fibers annealed in steam ambient and their photocatalytic properties[J]. Textile Research Journal, 2016, 87(18):2233-2241. |
[32] | 殷永霞, 沃西源. 碳纤维表面改性研究进展[J]. 航天返回与遥感, 2004, 25(01):51-54. YIN Y X, WO X Y. Review of carbon fiber's surface modification[J]. Spacecraft Recovery & Remote Sensing, 2004, 25(01):51-54(in Chinese). |
[33] | XU J, YANG H, FU W, et al. Preparation and characterization of carbon fibers coated by Fe3O4 nanoparticles[J]. Materials Science & Engineering B, 2006, 132(3):307-310. |