全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

基于深度学习的短纤维增强聚氨酯复合材料性能预测基于深度学习的短纤维增强聚氨酯复合材料性能预测
Prediction of properties of short fiber reinforced urethane polymer composites based on deep learning

DOI: 10.13801/j.cnki.fhclxb.20180821.001

Keywords: 短纤维增强聚氨酯复合材料,有效性能,深度学习,代理模型,不确定性
short fiber reinforced urethane composites
,effective properties,deep learning,surrogate model,uncertainty

Full-Text   Cite this paper   Add to My Lib

Abstract:

结合深度学习在图像识别领域的优势,将卷积神经网络(CNN)应用于有限元代理模型,预测了平面随机分布短纤维增强聚氨酯复合材料的有效弹性参数,并针对训练过程出现的过拟合,提出了一种数据增强的方法。为验证该代理模型的有效性,比较了其与传统代理模型在预测有效杨氏模量和剪切模量上的精度差异。在此基础上结合蒙特卡洛法利用卷积神经网络代理模型研究了材料微几何参数不确定性的误差正向传递。结果表明:相对于传统代理模型,卷积神经网络模型能更好地学习图像样本的内部特征,得到更加精确的预测结果,并在训练样本空间外的一定范围内可以保持较好的鲁棒性;随着纤维长宽比的增大,微几何参数的不确定性对材料有效性能预测结果会传递较大的误差。 Taking advantages of deep learning in the field of image recognition, the convolutional neural network(CNN) was applied to construct a surrogate model to predict the macroscopic performance of the planar random short fiber reinforced urethane composites, and a data enhancement method was proposed to suppress overfitting occurred in the training process. The accuracy in tensile and shear properties of materials predicted by traditional and CNN surrogate models were compared. Results show that compared with the traditional method, CNN model is much better in learning the internal features of the image samples and obtains more accurate prediction results. Meanwhile, robustness is well maintained in a certain range outside the training sample space. Based on this, the proposed CNN model was combined with Monte Carlo method to study the forward propagation of error in the uncertainty of microgeometric parameters. The simulation result demonstrates that as the fiber aspect ratio increases, the uncertainties of the microgeometric parameters will lead to a nonnegligible error in the prediction of the effective properties of the material. 国家自然科学基金(11772018

References

[1]  RILEY M B, WHITNEY J M. Elastic properties of fiber reinforced composite materials.[J]. AIAA Journal, 2012, 4(9):1537-1542.
[2]  TORQUATO S. Random heterogeneous materials:v.16[J]. Interdisciplinary Applied Mathematics, 2002, 55(4):B62.
[3]  丁玉生, 董绍明, 高乐, 等. 烧结温度对Cf/SiC复合材料结构及性能的影响[J]. 无机材料学报, 2008(06):1151-1154.DING Yusheng, DONG Shaoming, GAO L, et al. Effect of sitering temperature on microstructure and properties of Cf/SiC composites[J]. Journal of Inorganic Materials, 2008(06):1151-1154(in Chinese).
[4]  DOGHRI I, TINEL L. Micromechanicalmodeling and computation of elasto-plastic materials reinforced with distributed-orientation fibers[J]. International Journal of Plasticity, 2005, 21(10):1919-1940.
[5]  HOUNKPATI V, SALNIKOV V, VIVET A, et al. On the choice of homogenization method to achieve effective mechanical properties of composites reinforced by ellipsoidal and spherical particles[J]. ArXiv preprint:1701.09131, 2017.
[6]  KARI S, BERGER H, GABBERT U. Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites[J]. Computational Materials Science, 2007, 39(1):198-204.
[7]  ZHOU X Y, GOSLING P D, PEARCE C J, et al. Perturbation-based stochastic multi-scale computationalhomogenization method for the determination of the effective properties of composite materials with random properties[J]. Computer Methods in Applied Mechanics & Engineering, 2016, 300(1):84-105.
[8]  SUKIMAN M S, KANIT T, N'GUYEN F, et al. Effective thermal and mechanical properties of randomly oriented short and long fiber composites[J]. Mechanics of Materials, 2017, 107:56-70.
[9]  PAN Y, IORGA L, PELEGRI A A. Analysis of 3D random chopped fiber reinforced composites using FEM and random sequential adsorption[J]. Computational Materials Science, 2008, 43(3):450-461.
[10]  李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9):2508-2515. LI Yandong, HAO Zongbo, LEI Hang. Survey of convolutional neural network[J]. Journal of Computer Applications, 2016, 36(9):2508-2515(in Chinese)
[11]  B?HM H J, ECKSCHLAGER A, HAN W. Multi-inclusion unit cellmodels for metal matrix composites with randomly oriented discontinuous reinforcements[J]. Computational Materials Science, 2002, 25(1):42-53.
[12]  HUANG M, ZOU W, ZHENG Q S. Explicit expression of Eshelby tensor for arbitrary weakly non-circular inclusion in two-dimensional elasticity[J]. International Journal of Engineering Science, 2009, 47(11):1240-1250.
[13]  SIDERIDIS E, THEOTOKOGLOU E E, GIANNOPOULOS I. Analytical and computational study of themoduli of fiber-reinforced composites and comparison with experiments[J]. Composite Interfaces, 2015, 22(7):563-578.
[14]  SAKATA S I, ASHIDA F, KOJIMA T, et al. Influence of uncertainty in microscopic material property on homogenized elastic property of unidirectional fiber reinforced composites[J]. Theoretical & Applied Mechanics Japan, 2008, 56:67-76.
[15]  MEI H, BAI Q, SUN Y, et al. The effect of heat treatment on the strength and toughness of carbon fiber/silicon carbide composites with different pyrolytic carbon interphase thicknesses[J]. Carbon, 2013, 57(6):288-297.
[16]  TIAN W, QI L, SU C, et al. Numerical evaluation on mechanical properties of short-fiber-reinforced metal matrix composites:Two-step mean-field homogenization procedure[J]. Composite Structures, 2016, 139:96-103.
[17]  OGIERMAN W, KOKOT G. Homogenization of inelastic composites with misaligned inclusions by using the optimal pseudo-grain discretization[J]. International Journalof Solids & Structures, 2017, s(113-114):230-240.
[18]  MA J, ZHANG S, WRIGGERS P, et al. Stochastic homogenized effective properties of three-dimensional composite material with full randomness and correlation in the microstructure[J]. Computers & Structures, 2014, 144(C):62-74.
[19]  EL MOUMEN A, KANIT T, IMAD A, et al. Effect of reinforcement shape on physical properties and representative volume element of particles-reinforced composites:Statistical and numerical approaches[J]. Mechanics of Materials, 2015, 83:1-16.
[20]  SHENG P, ZHANG J, JI Z. An advanced 3Dmodeling method for concrete-like particle-reinforced composites with high volume fraction of randomly distributed particles[J]. Composites Science & Technology, 2016, 134:26-35.
[21]  SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133