|
- 2019
静电自组装定向制备还原氧化石墨烯-石墨相氮化碳复合材料及其导热性能
|
Abstract:
[1] | HAN N, CUONG T V, HAN M, et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern[J]. Nature Communications, 2013, 4:1452. |
[2] | 吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(4):760-766.WU Y M, YU J H, CAO Y, et al. Review of polymer-based composites with high thermal conductivity and low filler loading[J]. Acta Materiae Compositae Sinica, 2018, 35(4):760-766(in Chinese). |
[3] | EMANI N K, KILDISHEV A V, SHALAEV V M, et al. Graphene:A dynamic platform for electricalcontrol of plasmonic resonance[J]. Nanophotonics, 2015, 4(1):214-223. |
[4] | KIM K, KIM M, KIM J. Thermal and mechanical properties of epoxy composites with a binary particle filler system consisting of aggregated and whisker type boron nitride particles[J]. Composites Science & Technology, 2014, 103:72-77. |
[5] | YU C, ZHANG J, LI Z, et al. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites[J]. Composites Part A:Applied Science & Manufacturing, 2017, 98:25-31. |
[6] | GE L, HAN C, XIAO X, et al. Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4, with enhanced hydrogen evolution activity[J]. International Journal of Hydrogen Energy, 2013, 38(17):6960-6969. |
[7] | QU L, DAI L, ZHANG Z, et al. Mesh-on-mesh graphitic-C3N4@graphene for highly efficient hydrogen evolution[J]. Advanced Functional Materials, 2017, 27(15):1606352. |
[8] | 唐浩林, 潘牧, 木士春, 等. 修饰离子聚合度对膜-颗粒体系静电自组装的影响[J]. 无机化学学报, 2004, 20(2):128-132.TANG H L, PAN M, MU S C, et al. Influence of polymerization of decorated poly-ions on electro-statically self-assembled nano-particles coated membrane[J]. Chinese Journal of Inorganic Chemistry, 2004, 20(2):128-132(in Chinese). |
[9] | ZHOU C J, QIAN J J, YAN J, et al. A ternary photocatalyst of graphitic carbon nitride/cadmium sulfide/titania based on the electrostatic assembly using two-dimensional semiconductor nanosheets[J]. Journal of Colloid & Interface Science, 2017, 491:367-374. |
[10] | HOU T, XU R, TIWARI D, et al. Interaction between electrical double layers of soil colloids and Fe/Al oxides in suspensions[J]. Journal of Colloid & Interface Science, 2007, 310(2):670-674. |
[11] | 曹美文, 曹长海. pH调控的两性多肽表面活性剂自组装[J]. 中国科技论文, 2012, 7(9):731-735.CAO M W, CAO C H. pH-tuned self-assembly of a zwitterionic peptide surfactant[J]. China Science Paper, 2012, 7(9):731-735(in Chinese). |
[12] | FAGGIO G, CAPASSO A, MESSINA G, et al. High-temperature growth of graphene films on copper foils by ethanol chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2013, 117(41):21569-21576. |
[13] | NI Z, WANG Y, YU T, et al. Raman spectroscopy and imaging of graphene[J]. Nano Research, 2008, 1(4):273-291. |
[14] | DAI K, LU L H, LIU Q, et al. Sonication assisted preparation of graphene oxide/graphitic-C3N4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications[J]. Dalton Transactions, 2014, 43(17):6295-6299. |
[15] | YAO Z, YAN J, ZHU Y, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature Communications, 2014, 5:3783. |
[16] | SHTEIN M, NADIV R, BUZAGLO M, et al. Thermally conductive graphene-polymer composites:Size, percolation, and synergy effects[J]. Chemistry of Materials, 2015, 27(6):2100-2106. |
[17] | ZHANG H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano 2015, 9(10):9451-9469. |
[18] | SHI Y, JIANG S, ZHOU K, et al. Influence of g-C3N4 nanosheets on thermal stability and mechanical properties of biopolymer electrolyte nanocomposite films:A novel investigation[J]. ACS Applied Materials & Interfaces, 2014, 6(1):429-437. |
[19] | 铁伟伟, 杜兆禹, 高远浩, 等. 原位反应制备ZnS/还原氧化石墨烯复合材料及其光催化性能[J]. 复合材料学报, 2017, 34(5):1082-1087.TIE W W, DU Z Y, GAO Y H, et al. In-situ reaction fabrication of ZnS/reduced graphene oxide composite and its photocatalytic property[J]. Acta Materiae Compositae Sinica, 2017, 34(5):1082-1087(in Chinese). |
[20] | LIU X, BALLA I, BERGERON H, et al. Rotationally commensurate growth of MoS2 on epitaxial graphene[J]. ACS Nano, 2015, 10(1):1067-1075. |
[21] | CHANG H C, MIN W C, CHANG K, et al. Nitrogen-doped graphene/carbon nanotube self-assembly for efficient oxygen reduction reaction in acid media[J]. Applied Catalysis B:Environmental, 2014, 144:760-766. |
[22] | ZHANG Y, ZHOU Z, SHEN Y, et al. Reversible assembly of graphitic carbon nitride 3D network for highly selective dyes absorption and regeneration[J]. ACS Nano, 2016, 10(9):9036-9043. |
[23] | ZHANG J, JIANG J, ZHAO X S. Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets[J]. Journal of Physical Chemistry C, 2011, 115(14):6448-6454. |
[24] | YANG R, LI H, HUANG M, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95:59-89. |
[25] | NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22(22):4763-4770. |
[26] | 李嘉, 石峰晖, 吕晶, 等. 电弧法制备石墨烯材料的表征与评价[J]. 复合材料学报, 2015, 32(6):1658-1662.LI J, SHI F H, LV J, et al. Characterization and evaluation of electric-arc-produced graphene material[J]. Acta Materiae Compositae Sinica, 2015, 32(6):1658-1662(in Chinese). |
[27] | XIANG Q, YU J, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. Journal of Physical Chemistry C, 2011, 115(15):7355-7363. |
[28] | DONG F, ZHAO Z, XIONG T, et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis[J]. Applied Materials & Interfaces, 2013, 5(21):11392-11401. |
[29] | 张芬, 柴波, 廖翔, 等. RGO/CN复合材料的制备及可见光催化性能[J]. 无机化学学报, 2014, 30(4):821-827.ZHANG F, CHAI B, LIAO X, et al. Preparation and visible light photocatalytic properties of RGO/C3N4 composites[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(4):821-827(in Chinese). |
[30] | HOU Y, WEN Z, CUI S, et al. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation[J]. Nano Letters, 2016, 16(4):2268-2277. |