全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

多孔ZnO/羟基磷灰石生物复合材料的制备与性能
Fabrication and properties of porous ZnO/hydroxyapatite biocomposites

DOI: 10.13801/j.cnki.fhclxb.20190401.004

Keywords: 多孔羟基磷灰石,ZnO,放电等离子烧结,力学性能,磷灰石形成能力
porous hydroxyapatite
,ZnO,spark plasma sintering,mechanical properties,apatite formation capacity

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[4] NISHIDA J, SHIMAMURA T. Methods of reconstruction for bone defects after tumor excision:A review of alternatives[J]. Medical Science Monitor, 2008, 14(8):107-113.
-->
[1]  SHAKIR M, JOLLY R, KHAN M S, et al. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct:Synthesis and in vitro studies[J]. International Journal of Biological Macromolecules, 2015, 80:282-292.
[2]  -->[4] NISHIDA J, SHIMAMURA T. Methods of reconstruction for bone defects after tumor excision:A review of alternatives[J]. Medical Science Monitor, 2008, 14(8):107-113.
[3]  MONIKA ?. Substituted hydroxyapatites for biomedical applications:A review[J]. Ceramics International, 2015, 41(8):9203-9231.
[4]  MURUGAN R, RAMAKRISHNA S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite[J]. Biomaterials, 2004, 25(17):3829-3835.
[5]  ZOFKOVA I, NEMCIKOVA P, MATUCHA P, et al. Trace elements and bone health[J]. Clinical Chemistry & Laboratory Medicine, 2013, 51(8):1555-1561.
[6]  ASSAF S Y, CHUNG S H. Release of endogenous Zn2+from brain tissue during activity[J]. Nature, 1984, 308(5961):734-736.
[7]  ZHOU J, XU N S, WANG Z L. Dissolving behavior and stability of ZnO wires in biofluids:A study on biodegradability and biocompatibility of ZnO nanostructures[J]. Advanced Materials, 2006, 18(18):2432-2435.
[8]  DINGA M, SAHEBGHARANIA N, MUSHARAVATI F. Synthesis and properties of HA/ZnO/CNT nanocomposite[J]. Ceramics International, 2018, 44(7):7746-7753.
[9]  REN F Z, XIN R L, GE X, et al. Characterization and structural analysis of zinc-substituted hydroxyapatites[J]. Acta Biomaterialia, 2009, 5(8):3141-3149.
[10]  HOEPFNER T P, CASE E D. The influence of the microstructure on the hardness of sintered hydroxyapatite[J]. Ceramics International, 2003, 29(6):699-706.
[11]  LASGORCEIX M, CHAMPION E, CHARTIER T, et al. Shaping by microstereolithography and sintering of macro-micro-porous silicon substituted hydroxyapatite[J]. Journal of the European Ceramic Society, 2016, 36(4):1091-1101.
[12]  周廉. 中国生物医用材料科学与产业现状及发展战略研究[M]. 北京:化学工业出版社, 2012.ZHOU L. Research on the current situation and development strategy of biomedical materials science and industry in China[M]. Beijing:Chemical Industry Press, 2012(in Chinese).
[13]  LACZKA M, CHOLEWA-KOWALSKA K, OSYCZKA A M. Bioactivity and osteoinductivity of glasses and glassceramics and their material determinants[J]. Ceramics International, 2016, 42(13):14313-14325.
[14]  DINOPOULOS H, DIMITRIOU R, GIANNOUDIS P V. Bone graft substitutes:What are the options?[J]. The surgeon:Journal of the Royal Colleges of Surgeons of Edinburgh and Ireland, 2012, 10(4):230-239.
[15]  范田堂, 陈景帝, 刘小翠, 等. Fe3O4-壳聚糖-胶原-纳米羟基磷灰石原位复合支架的仿生制备及表征[J]. 复合材料学报, 2017, 34(11):2593-2597.FAN T T, CHEN J D, LIU X C, et al. Biomimetic preparation and characterization of Fe3O4-chitosan-collagen-nano hydroxyapatite in situ composite scaffold[J]. Acta Materiae Compositae Sinica, 2017, 34(11):2593-2597(in Chinese).
[16]  LI H, GONG M, YANG A, et al. Degradable biocomposite of nano calcium-deficient hydroxyapatite-multi (amino acid) copolymer[J]. International Journal of Nanomedicine, 2012, 7(7):1287-1295.
[17]  KULANTHAIVEL S, MISHRA U, AGARWAL T, et al. Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion[J]. Ceramics International, 2015, 41(9):11323-11333.
[18]  国家质量技术监督局. 陶瓷材料抗压强度试验方法:GB/T 4740-1999[S]. 北京:中国标准出版社, 2000.State Bureau of Quality and Technical Supervision. Test method for compressive strength of ceramic materials:GB/T 4740-1999[S]. Beijing:China Standards Press, 2000(in Chinese).
[19]  INDU B, BIKRAMJIT B. Spark plasma sintered HA-ZnO ultrafine composite:Mechanical, bactericidal, and cytocompatibility properties[J]. Applied Ceramic Technology, 2018, 15(4):961-969.
[20]  MIYAJI F, KONO Y, SUYAMA Y. Formation and structure of zinc-substituted calciumhydroxyapatite[J]. Materials Research Bulletin, 2005, 40(2):209-220.
[21]  DOROZHKIN S V. Nanosized and nanocrystalline calcium orthophosphates[J]. Acta Biomaterialia, 2010, 6(3):715-734.
[22]  BYEON I S, LEE K, CHOE H C, et al. Surface morphology of Zn-containing hydroxyapatite (Zn-HA) deposited electrochemically on Ti-xNb alloys[J]. Thin Solid Films, 2015, 587:163-168.
[23]  PUVALA V G, SHRUTHI V S, SIVASUBRAMANIAN A, et al. Ramification of zinc oxide doped hydroxyapatite biocomposites for the mineralization of osteoblasts[J]. Materials Science & Engineering C, 2019, 96:337-346.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133