|
- 2019
超声波辅助制备癸酸-棕榈酸@改性SiO2调温调湿复合材料超声波辅助制备癸酸-棕榈酸@改性SiO2调温调湿复合材料
|
Abstract:
以硅烷偶联剂改性SiO2为壁材,癸酸(DA)-棕榈酸(PA)为芯材,利用超声波辅助溶胶-凝胶法制备DA-PA@改性SiO2调温调湿复合材料,分析了硅烷偶联剂用量、超声波功率、超声波时间和超声波温度对DA-PA@改性SiO2调温调湿复合材料粒径的影响,以及相关性能。结果表明,利用超声波辅助溶胶-凝胶法制备DA-PA@改性SiO2调温调湿复合材料,可以显著降低粒径尺寸和减小粒径分布。当硅烷偶联剂用量为4.0 g、超声波功率为120 W、超声波时间为100 min和超声波温度为60℃时,DA-PA@改性SiO2调温调湿复合材料的粒径较小且粒径分布较窄,即d90=87.36 nm、d50=63.34 nm、d10=44.02 nm和d90-d10=43.34 nm,在相对湿度40.0%~65.0%范围内的平衡含湿量为0.1864~0.2379 g/g,相变温度为20.23~23.59℃,相变潜热为40.91~46.72 J/g,稳定性能良好。 With silane coupling agent modified SiO2 as wall material and decanoic acid (DA)-palmitic acid (PA) as call material, the DA-PA@modified SiO2 temperature and humidity control composites were prepared by sol-gel method with ultrasonic wave-assisted. The effects of the content of silane coupling agent, ultrasonic wave power, ultrasonic wave time and ultrasonic wave temperature on the particle size of the DA-PA@modified SiO2 temperature and humidity control composites and related properties were investigated. The results show that the particle size and its distribution of the DA-PA@modified SiO2 temperature and humidity control composites can be significantly reduced using sol-gel method with ultrasonic wave-assisted. With the content of silane coupling agent of 4.0 g, ultrasonic wave power of 120 W, ultrasonic wave time of 100 min and ultrasonic wave temperature of 60℃, the DA-PA@modified SiO2 temperature and humidity control composites has small diameter and narrow particle size distribution, such as d90=87.36 nm, d50=63.34 nm, d10=44.02 nm and d90-d10=43.34 nm. Its equilibrium moisture content in the relative humidity of 40.0%-65.0% is 0.1864-0.2379 g/g, phase change temperature is 20.23-23.59℃, phase change latent heat is 40.91-46.72 J/g, and the stability performance is good. 中国博士后科学基金(2017M612051);安徽省博士后研究人员科研活动经费(2017B168);安徽工业大学研究生创新研究基金(2017072
[1] | LI B X, LIU T X, HU L Y, et al. Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3):374-830. |
[2] | RAO Z H, WANG S F, ZHANG Z G. Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate[J]. Renewable & Sustainable Energy Reviews, 2012, 16(5):3136-3145. |
[3] | 尚建丽, 张浩, 熊磊, 等. 脂肪酸/SiO2复合相变材料的制备及其织构影响因素的研究[J]. 材料研究学报, 2015, 29(10):757-766. SHANG J L, ZHANG H, XIONG L, et al. Preparation and texture of phase change materials of fatty acid/SiO2 composite[J]. Chinese Journal of Materials Research, 2015, 29(10):757-766(in Chinese). |
[4] | KARAMA S, KARAIPEKLI A, SARI A, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2011, 95:1647-1653. |
[5] | 张浩, 刘秀玉, 宗志芳, 等. 癸酸-棕榈酸/SiO2复合相变材料的热性能[J]. 过程工程学报, 2015, 15(5):860-865. ZHANG H, LIU X Y, ZONG Z F, et al. Thermal property of decanoic acid(palmitic acid/SiO2 composite phase change material[J]. The Chinese Journal of Process Engineering, 2015, 15(5):860-865(in Chinese). |
[6] | WANG B X, ZHOU L P, PENG X F. Viscosity, thermal diffusivity and prandtl number of nanoparticle suspensions[J]. Progress in Natural Science:Materials International, 2004, 14(10):922-926. |
[7] | LI M, KAO H T, WU Z S. Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials[J]. Solar Energy Materials & Solar Cells, 2011, 95(8):2412-2416. |
[8] | HUYNH C K. Building energy saving techniques and indoor air quality:A dilemma[J]. International Journal of Ventilation, 2010, 9(1):93-98. |
[9] | 张浩, 黄新杰, 宗志芳, 等. 细粒径SiO2基棕榈醇-棕榈酸-月桂酸微胶囊相变调湿材料的制备与性能[J]. 材料研究学报, 2016, 30(6):418-426. ZHANG H, HUANG X J, ZONG Z F, et al. Preparation and properties of SiO2 based hexadecanol-palmitic acid-lauric acid microencapsulated phase change and humidity controlling materials with fine particle size[J]. Chinese Journal of Materials Research, 2016, 30(6):418-426(in Chinese). |
[10] | PAL S, HAJJ M R, WONG W P, et al. Thermal energy storage in porous materials with adsorption and desorption of moisture[J]. International Journal of Heat & Mass Transfer, 2014, 69(2):285-292. |
[11] | 张浩, 黄新杰, 刘秀玉, 等. 优化制备棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料[J]. 材料研究学报, 2015, 29(9):671-678. ZHANG H, HUANG X J, LIU X Y, et al. Optimization for preparation of phase change and humidity control composite materials of hexadecanol-palmitic acid-lauric acid/SiO2[J]. Chinese Journal of Material Research, 2015, 29(9):671-678(in Chinese). |
[12] | HE F, WANG X D, WU D Z. New approach for sol-gel synthesis of microencapsulated N-octadecane phase change material with silica wall using sodium silicate precursor[J]. Energy, 2014, 67(4):223-233. |
[13] | 尚建丽, 张浩, 熊磊, 等. 基于均匀设计优化制备癸酸-棕榈酸/SiO2复合相变材料[J]. 材料工程, 2015, 43(9):94-102. SHANG J L, ZHANG H, XIONG L, et al. Optimized preparation of decanoic-palmitic acid/SiO2 composite phase change metarials based on uniform design[J]. Journal of Materials Engineering, 2015, 43(9):94-102(in Chinese). |
[14] | 尚建丽, 张浩. 癸酸-棕榈酸/SiO2相变储湿复合材料的制备与表征[J]. 复合材料学报, 2016, 32(2):341-349. SHANG J L, ZHANG H. Preparation and characterization of decanoic acid-palmitic acid/SiO2 phase change and humidity storage composites[J]. Acta Materiae Compositae Sinica, 2016, 32(2):341-349(in Chinese). |
[15] | ZHU N, MA Z J, WANG S W. Dynamic characteristics and energy performance of buildings using phase change materials:A review[J]. Energy Conversion and Management, 2009, 50(12):3169-3181. |
[16] | HUNTER R J. Foundations of colloid science[M]. London:Oxford University Press, 1981:132-136. |
[17] | 张浩. 基于RBF网络优化制备均匀粒度分布的微米级SiO2基相变调湿复合材料[J]. 材料工程, 2017, 45(8):24-29. ZHANG H. Optimizing preparation of micron SiO2-based phase change and humidity controlling composites with uniform particle size distribution based on RBF neural network[J]. Journal of Materials Engineering, 2017, 45(8):24-29(in Chinese). |
[18] | 王晓梅, 赵宝宝. 超声波辅助制备可光催化降解TiO2微胶囊的研究[J]. 天津工业大学学报, 2013, 32(1):34-37. WANG X M, ZHAO B B. Study on preparation of photo-catalytic degradable TiO2 microcapsules with ultrasound irradiation[J]. Journal of Tianjin Polytechnic University, 2013, 32(1):34-37(in Chinese). |
[19] | MOTAHAR S, NIKKAM N, ALEMRAJABI A A, et al. A novel phase change material containing mesoporous silica nanoparticles for thermal storage:A study on thermal conductivity and viscosity[J]. International Communications in Heat & Mass Transfer, 2014, 56(8):114-120. |
[20] | LI M, KAO H T, WU Z S, et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials[J]. Applied Energy, 2011, 88(5):1606-1612. |