|
- 2019
接头尺寸对玻璃纤维/热塑性树脂复合材料机械连接性能的影响接头尺寸对玻璃纤维/热塑性树脂复合材料机械连接性能的影响
|
Abstract:
对玻璃纤维/聚酰胺(GF/PA)、玻璃纤维/聚甲醛(GF/POM)、玻璃纤维/聚丙烯(GF/PP)这三种玻璃纤维增强热塑性树脂基复合材料进行机械连接试样的常规拉伸试验,以及低周疲劳拉伸试验,并对疲劳前后的试样断裂面进行SEM观察,研究了接头尺寸(宽径比w/d (试样宽度/开孔直径)和端径比e/d (试样端距/开孔直径))对机械连接件破坏载荷和破坏模式的影响。实验结果表明:玻璃纤维增强纤热塑性树脂复合材料机械连接件的承载能力在一定的宽径比时会随着e/d的增加而增加,当w/d≥3、e/d≥2时趋于稳定;破坏模式以拉伸破坏为主;低周疲劳拉伸对GF/POM和GF/PA机械连接试样拉伸强度产生一定的影响,而对GF/PP的拉伸强度无明显影响,低周疲劳拉伸对玻璃纤维增强热塑性树脂复合材料机械连接试样的破坏模式没有影响。SEM观察显示,随着疲劳载荷水平的增加,GF/POM和GF/PA的断裂面上被抽拔纤维数量增加,而GF/PP断裂面纤维与基体的存在状态无明显变化。 The mechanically fastened joint specimen tensile test of three kinds of glass fiber reinforced thermoplastic resin composites including glass fiber/polyamide (GF/PA), glass fiber/polyformaldehyde (GF/POM) and glass fiber/polypropylene (GF/PP) were conducted. Additionally, low cycle fatigue tensile test was carried out for three kinds of composite mechanical joints, and the fracture surface of the sample before and after fatigue was observed by SEM, to investigate the effect of joint dimension (sample width/hole diameter(w/d) and edge distance/hole diameter(e/d)) on the failure load of mechanically fastened joint and failure mode. It is found that:The bearing capacity of the mechanically fastened joint of glass fiber reinforced thermoplastic resin composites increases with the increase of e/d at a certain w/d, and tends to be stable when w/d ≥ 3 and e/d ≥ 2. The failure mode is mainly tensile failure. Low cycle tensile fatigue has a certain effect on the tensile strength of GF/POM and GF/PA mechanically jointed specimens, but has no significant effect on that of GF/PP. On the other hand, low cycle fatigue stretch has no obvious effect on the failure mode of the mechanically bonded specimens of glass fiber reinforced thermoplastic resin. SEM observation shows that, with the increase of the fatigue load level, the number of pulled fibers on the fracture surface of GF/POM and GF/PA increases, while there is no significant effect on the existence of fiber and matrix in GF/PP. 国家自然科学基金(51302036
[1] | 方鲲, 张国荣, 吴丝竹, 等. 长纤维增强热塑性复合材料在汽车零配件上的应用进展[J]. 中国塑料, 2009, (03):13-18. FANG Kun, ZHANG Guorong, WU Sizhu, et al. Application progress of long fiber reinforced thermoplastic composites in automotive parts and accessories[J]. China Plastics, 2009(03):13-18(in Chinese). |
[2] | 王花娟, 杨杰, 刘新东, 等. 复合材料机械连接强度影响因素的研究进展[J]. 材料导报, 2007(s3):438-440. WANG Huajuan, YANG Jie, LIU Xindong, et al. Research progress of influencing factors of mechanical connection strength of composites[J]. Materials Review, 2007(s3):438-440(in Chinese). |
[3] | 蔡天舒. 复合材料螺栓连接数值分析及次弯曲效应研究[D]. 武汉:武汉理工大学, 2010. CAI Tianshu. Numerical analysis of composite bolt connection and secondary bending effect[D]. Wuhan:Wuhan University of Technology, 2010(in Chinese). |
[4] | 刘建超, 王铁军, 张炜. 碳纤维织物/环氧复合材料销钉连接实验研究[J]. 材料工程, 2005(07):51-63. LIU Jianchao, WANG Tiejun, ZHANG Wei. Experimental study on the pin joint of carbon fiber fabric/epoxy composite[J]. Material Engineering, 2005(07):51-63(in Chinese). |
[5] | 梅端. 玻璃纤维增强树脂基复合材料力学疲劳性能研究[D]. 武汉:武汉理工大学, 2010. MEI Rui. Research on mechanical fatigue properties of glass fiber reinforced resin matrix composites. Wuhan:University of Technology, 2010(in Chinese). |
[6] | 张以河. 复合材料学[M]. 北京:化学工业出版社, 2011:190-192. ZHANG Yihe. Composite Materials Science[M]. Beijing:Chemical Industry Press, 2011:190-192(in Chinese). |
[7] | STUART Dutton, DONALD Kelly, ALAN Baker. Composite materials for aircraft structures[M]. 2nd edition. US:AIAA. 2004:213-223. |
[8] | 汪华锋. 纳米复合材料的制备及力学性能研究[D]. 杭州:浙江大学, 2005. WANG Huafeng. Preparation and mechanical properties of nanocomposite materials[D]. Hangzhou:Zhejiang University, 2005(in Chinese). |
[9] | BULENT Murat Icten, ONUR Sayman. Failure analysis of pin-loaded aluminum-glass-epoxy sandwich composite plates[J]. Composite Science & Technology, 2003, 63:727. |
[10] | 周松. 复合材料螺栓连接渐进损伤的实验及数值分析[D]. 哈尔滨工程大学, 2013. ZHOU Song. Experimental and numerical analysis of progressive damage of composite bolted joints[D]. Harbin Engineering University, 2013(in Chinese). |
[11] | 马毓, 李飞, 赵启林, 等. 复合材料构件机械连接接头破坏模式与机理[J]. 解放军理工大学学报(自然科学版), 2010, 11(6):658-663. MA Yu, LI Fei, ZHAO Qilin, et al. Failure mode and mechanism of mechanical joint connection of composite components[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(6):658-663(in Chinese). |
[12] | COOPER C, TURVEY G J. Effects of joint geometry and torque on the structural performance of single bolt tension joints in pultruded GRP sheet material[J]. Composite Structures, 2006, 73(3):310-317. |
[13] | 朱剑. 复合材料及其发展概况[J]. 科技咨询导报, 2007(6):1-3. ZHU Jian. Composite materials and its development overview[J]. Science and Technology Review, 2007(6):1-3(in Chinese). |
[14] | 周松. 复合材料螺栓连接渐进损伤的实验及数值分析[D]. 哈尔滨:哈尔滨工程大学, 2013. ZHOU Song. Experimental and numerical analysis of progressive damage of composite bolted joints[D]. Harbin:Harbin Engineering University, 2013(in Chinese). |
[15] | 史红星, 王斌团. 复合材料层合板与金属板螺栓连接载荷分配研究[J]. 第17届全国复合材料学术会议论文集, 2012:231-236.SHI Hongxing, WANG Bintuan. Study of bolt load distribution of bolted joints of composite laminates with metal laps[J]. Proceeding of 17th National Conference on Composite Materials, 2012:231-236(in Chinese). |
[16] | 顾亦磊. 复合材料机械连接强度分析及影响因素研究[D]. 西安:西北工业大学, 2006. GU Yilei. Analysis of mechanical connection strength and influence factors of composite materials[D]. Xi'an:Northwestern polytechnic university, 2006(in Chinese). |
[17] | 纤维增强塑料拉伸性能试验方法:GB/T 1447-2005[S]. 北京:中国标准出版社,2005.Fiber-reinforced plastics composites-Determination of tensile properties:GB/T 1447-2005[S]. Beijing:Standards Press of China, 2005. |