全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

搅拌铸造法制备短碳纤维/AZ91复合材料的组织与性能
Microstructure and mechanical properties of short carbon fiber/AZ91 composite fabricated by stir-casting

DOI: 10.13801/j.cnki.fhclxb.20180613.003

Keywords: 搅拌铸造,热挤压,CFs/AZ91,镁基复合材料,显微组织,力学性能
stir-casting
,extrusion,CFs/AZ91,Mg matrix composites,microstructure,mechanical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用搅拌铸造法制备了不同体积分数(10vol%、15vol%、20vol%)的短碳纤维增强镁基(CFs/AZ91)复合材料,并选取了三个挤压比和两个挤压温度对其进行热挤压变形,采用光学显微镜(OM)、SEM和TEM对CFs/AZ91复合材料的显微组织进行了观察,并测试其室温力学性能及阻尼性能。研究结果表明,热挤压能够有效降低CFs/AZ91复合材料气孔率;在热挤压过程中,纤维沿挤压方向定向排列,同时基体发生动态再结晶。随着挤压温度及挤压比的增大,晶粒呈现等轴状,组织更加均匀。CFs/AZ91复合材料经过挤压后,其力学性能得到提高,屈服强度和抗拉强度随挤压比和CFs体积分数的增大而增大,然而CFs纤维在热挤压后发生明显断裂,限制了挤压态复合材料强度的进一步提升。低温低挤压比条件下,CFs/AZ91复合材料具有较好的阻尼性能,随着挤压比及挤压温度的升高,CFs/AZ91复合材料室温及高温阻尼性能均有所降低。 The short carbon fiber (CFs) reinforced AZ91 Mg matrix composites with different CFs volume fractions (10vol%, 15vol%, 20vol%) were fabricated by stir-casting method. The cast CFs/AZ91 composites were extruded into bars with three different extrusion ratios at 250℃ and 350℃, respectively. During the hot extrusion, grains of the AZ91 matrix are refined due to the dynamic recrystallizaiton while the CFs distribute parallel to the extrusion direction. With increasing of the extrusion temperature and extrusion ratio, the porosity ratio of the CFs/AZ91 composites is reduced effectively and the recrystalled grains grow up accompanied by the improvement of the microstructure homogeneity. The tensile properties of CFs/AZ91 composites are improved due to the improved microstructure whereas the fiber fractures obviously during extrusion, which will restrict the further improvement of the mechanical properties. The CFs/AZ91 composite extruded with small extrusion ratio at lower temperature has better damping capabilities than those of the composites extruded with high extrusion ratio and higher temperature. 国家自然科学基金(51201006;51071057

References

[1]  杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese).
[2]  RUSSELL M, TODD R, PAPAKYRIACOU M. Microstructural analysis of a carbon fibre reinforced AZ91D magnesium alloy composite[J]. Surface and Interface Analysis, 2005, 37(3):336-342.
[3]  RUSSELL M, TODD R, PAPAKYRIACOU M. Thermal expansion behaviour of ultra-high modulus carbon fibre reinforced magnesium composite during thermal cycling[J]. Journal of Materials Science, 2006, 41(19):6228-6236.
[4]  HALL I W. The interface in carbon-magnesium composites:Fiber and matrix effects[J]. Journal of Material Science. 1991, 26(3):776-781.
[5]  马春江, 张荻, 覃继宁, 等. 镁锂基复合材料的界面结构及热力学分析[J]. 稀有金属. 1999, 23(6):401-404.MA C J, ZHANG D, QIN J N, et al. Study on thermodynamics and interfacial structure of Mg-Li based composites[J]. Chinese Journal of Rare Metals, 1999, 23(6):401-404(in Chinese).
[6]  ZHANG J, PEREZ R J, LAVERNIA E J. Effect of SiC and graphite particulates on the damping behavior of metal-matrix composites[J]. Acta Metallurgica et Materialia, 1994, 42(2):395-409.
[7]  PEREZ R J, ZHANG J, GUNGOR M N, et al. Damping behavior of 6061Al/Gr metal matrix composites[J]. Metallurgical Transactions A, 1993, 24(3):701-712.
[8]  苏长青, 齐乐华, 张丽丹, 等. 连续碳纤维/Mg复合材料异形薄板件预制体制备与成型[J]. 复合材料学报, 2017, 34(6):1285-1292. SU C Q, QI L H, ZHANG L D, et al. Fabrication and forming of preforms for carbon fiber/Mg composites sheet-shaped component[J]. Acta Materiae Compositae Sinica, 2017, 34(6):1285-1292(in Chinese).
[9]  KLEINE A, HEMPTENMAHER J, DUDEK H J, et al. Interface formation in carbon fibre reinforced magnesium alloys (AZ91)[J]. Journal of Materials Science Letters, 1995, 14(5):358-360.
[10]  ROHATGI P K, NATH D, SINGH S S, et al. Factors affecting the damping capacity of cast aluminium-matrix composites[J]. Journal of Materials Science, 1994, 29(22):5975-5984.
[11]  LAVERNIA E J, PEREZ R J, ZHANG J. Damping behavior of discontinuously reinforced Al alloy metal-matrix composites[J]. Metallurgical and Materials Transactions A, 1995, 26(11):2803-2818.
[12]  刘刚. Sn-Bi涂覆Al18B4O33w/Al复合材料的界面设计及阻尼机制研究[D]. 哈尔滨:哈尔滨工业大学, 2011. LIU G. Study for interfacial design and damping mechanisms of Sn-Bi coated aluminum borate whisker reinforced aluminum matrix composite[D]. Harbin:Harbin Institute of Technology, 2011(in Chinese).
[13]  邓华, 高军鹏, 包建文, 等. 取向非连续碳纤维复合材料制备与性能[J]. 航空材料学报, 2018, 38(1):69-74. DENG H, GAO J P, BAO J W, et al. Preparation and mechanical properties of aligned discontinuous carbon fiber composites[J]. Journal of Aeronautical Materials, 2018, 38(1):69-74(in Chinese).
[14]  王晓军. 搅拌铸造SiC颗粒增强镁基复合材料高温变形行为研究[D]. 哈尔滨:哈尔滨工业大学, 2008. WANG X J. Study on hot deformation behavior of SiC parti-culate reinforced magnesium matrix composites fabricated by stir casting[D]. Harbin:Harbin Institute of Technology, 2008(in Chinese).
[15]  张小农. 金属基复合材料的阻尼行为研究[D]. 上海:上海交通大学, 1997. ZHANG X N. Study on damping behavior of metal matrix composites[D]. Shanghai:Shanghai Jiao Tong University, 1997(in Chinese).
[16]  黄勇. 搅拌铸造Csf/AZ91镁基复合材料的组织与性能研究[D]. 哈尔滨:哈尔滨工业大学, 2007. HUANG Y. The study on microstructure and properties of Csf/AZ91 magnesium matrix composite fabricated by stir-castingum matrix composites fabricated by stir casting[D]. Harbin:Harbin Institute of Technology, 2007(in Chinese).
[17]  常海, 王晓军, 胡小石, 等. 挤压过程中SiC颗粒对镁基复合材料基体动态再结晶行为的影响[J]. 稀有金属材料与工程, 2014, 43(8):1821-1825. CHANG H, WANG X J, HU X S, et al. Effects of reinforced particles on dynamic recrystallization of Mg base alloys during hot extrusion[J]. Rare Metal Materials and Engineering, 2014, 43(8):1821-1825(in Chinese).
[18]  罗守靖. 复合材料液态挤压[M]. 北京:冶金工业出版社, 2002. LUO S J. Liquid extrusion of composite material[M]. Beijing:Metallurgy Industry Press, 2002(in Chinese).
[19]  GRANATO A, LVCKE K J. Theory of mechanical damping due to dislocation[J]. Journal of Applied Physics, 1956, 27(6):583-593.
[20]  张小农, 吴人洁, 张荻, 等. 高阻尼金属基复合材料的发展途径[J]. 材料工程, 1997, 3(9):34-37. ZHANG X N, WU R J, ZHANG D, et al. How to develop a new kind of metal matrix composites with high damping capacity[J]. Journal of Materials Engineering, 1997, 3(9):34-37(in Chinese).
[21]  SCHALLER R. Metal matrix composites, a smart choice for high damping materials[J]. Journal of Alloys and Compounds, 2003, 355(1-2):131-135.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133