|
- 2019
Fe3O4/MnO2磁性复合氧化物催化剂的制备及性能
|
Abstract:
具有磁性的非均相催化剂价格低廉、低污染、高能效、容易从溶液中分离出来。经过水热合成法合成的Fe3O4/MnO2磁性复合氧化物催化剂在活化过一硫酸盐(2KHSO5·KHSO4·K2SO4)产生硫酸根自由基(SO4-)降解水中有机污染物表现出了优良的性能。把不同质量的磁性Fe3O4微球与线状的MnO2负载到一起,合成三种Fe3O4:MnO2质量比分别为1:3、2:3、1:1的Fe3O4/MnO2催化剂,经过XRD、SEM和TEM表征,表明这两种金属氧化物负载到一起。对比不同Fe3O4:MnO2质量比的Fe3O4/MnO2磁性复合氧化物催化剂活化2KHSO5·KHSO4·K2SO4的活性,发现Fe3O4/MnO2(2:3)催化剂催化活性最高。通过考察不同因素对Fe3O4/MnO2(2:3)催化活性的影响得出,水中罗丹明B(Rh B)降解的最佳条件为10 mg/L Rh B、0.4 g/L Fe3O4/MnO2催化剂、0.3 g/L 2KHSO5·KHSO4·K2SO4、pH=8。Fe3O4/MnO2(2:3)磁性复合氧化物催化剂经过3次循环利用后,催化活性没有明显下降。SO4-在降解水中Rh B起主要作用。 The heterogeneous catalyst of magnetism is low cost, little hazardous, high efficient and easy separation from aqueous solutions. The Fe3O4/MnO2 magnetic bimetal oxide catalyst prepared via hydrothermal method shows a better performance in activating 2KHSO5·KHSO4·K2SO4 for Rhodamine B (Rh B) degradation in aqueous solutions. Different quality of magnetic microspheres Fe3O4 and nanowire MnO2 loaded together, synthesizing Fe3O4/MnO2 catalyst with three different Fe3O4:MnO2 mass ratios, which are 1:3, 2:3, 1:1. The characterizations of XRD, SEM and TEM show that two metallic oxide are loaded together. Compared with the catalytic performances of three Fe3O4/MnO2 magnetic bimetal oxide catalysts according to activate 2KHSO5·KHSO4·K2SO4 for Rh B degradation in aqueous solutions, founding the Fe3O4/MnO2(2:3) catalyst has the best catalytic activity. According to investigating the effects of reaction parameters on Rh B degradation on Fe3O4/MnO2(2:3) catalyst, the best conditions of Rh B degradation in aqueous solutions are 10 mg/L Rh B, 0.4 g/L Fe3O4/MnO2, 0.3 g/L 2KHSO5·KHSO4·K2SO4 and pH=8. After three cyclic utilizations, the 2:3 Fe3O4/MnO2 magnetic bimetal oxide catalyst still have a good performance. SO4- plays an important role in degrading Rh B in aqueous solutions. 国家科技重大专项项目(2016ZX05040003
[1] | 周云, 欧阳晓平, 王媛, 等. 还原氧化石墨烯@Ag2O改性TiO2基复合材料的制备及其可见光催化性能[J]. 复合材料学报, 2018, 35(2):384-390. ZHOU Y, OUYANG X P, WANG Y, et al. Preparation of reduced graphene oxide@Ag2O modified TiO2-based composites and their visible light photocatalytic properties[J]. Acta Materiae Compositae Sinica, 2018, 35(2):384-390(in Chinese). |
[2] | KHATAEE A, GHOLAMI P, SHEYDAEI M. Heterogeneous Fenton process by natural pyrite for removal of a textile dye from water:Effect of parameters and intermediate identification[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58:366-373. |
[3] | KHATAEE A, GHOLAMI P, VAHID B, et al. Heterogeneous sono-Fenton process using pyrite nanorods prepared by non-thermal plasma for degradation of an anthraquinone dye[J]. Ultrasonics Sonochemistry, 2016, 32:357-370. |
[4] | NARAYANI H, AUGUSTINE R, SUMI S, et al. Removal of basic and industrial azo reactive dyes from aqueous solutions via Fenton-like reactions using catalytic non-magnetic Pd-flyash and magnetic Pd-Fe3O4-flyash composite particles[J]. Separation and Purification Technology, 2017, 172:338-349. |
[5] | DING Y B, ZHU L H, WANG N, et al. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J]. Applied Catalysis B:Environmental, 2013, 129:153-162. |
[6] | HUANG Z F, BAO H W, YAO Y Y, et al. Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst[J]. Applied Catalysis B:Environmental, 2014, 154:36-43. |
[7] | SAPUTRA E, MUHAMMAD S, SUN H Q, et al. α-MnO2 activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions[J]. Catalysis Communications, 2012, 26:144-148. |
[8] | YAO Y J, YANG Z H, SUN H Q, et al. Hydrothermal synthesis of Co3O4-graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol[J]. Industrial & Engineering Chemistry Research, 2012, 51(46):14958-14965. |
[9] | WANG Y X, SUN H Q, ANG H M, et al. Magnetic Fe3O4/carbon sphere/cobalt composites for catalytic oxidation of phenol solutions with sulfate radicals[J]. Chemical Engineering Journal, 2014, 245:1-9. |
[10] | SAPUTRA E, MUHAMMAD S, SUN H Q, et al. A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions[J]. Journal of Colloid and Interface Science, 2013, 407:467-473. |
[11] | CHU K H, YE L Q, WANG W, et al. Enhanced photocatalytic hydrogen production from aqueous sulfide/sulfite solution by ZnO0.6S0.4 with simultaneous dye degradation under visible-light irradiation[J]. Chemosphere, 2017, 183:219-228. |
[12] | 郭勤, 黄冬根, 熊伟, 等. 电化学制备石墨烯/纳米TiO2复合材料及光催化性能[J]. 复合材料学报, 2018, 35(1):142-149. GUO Q, HUANG D G, XIONG W, et al. Electrochemical preparation and photocatalytic performance of graphene/nano TiO2 composites[J]. Acta Materiae Compositae Sinica, 2018, 35(1):142-149(in Chinese). |
[13] | NASUHA N, ISMAIL S, HAMEEDB H. Activated electric arc furnace slag as an effective and reusable Fenton-like catalyst for the photodegradation of methylene blue and acid blue 29[J]. Journal of Environmental Management, 2017, 196:323-329. |
[14] | BEDOLLA-GUZMAN A, SIRES I, THIAM A, et al. Application of anodic oxidation, electro-Fenton and UVA photoelectro-Fenton to decolorize and mineralize acidic solutions of reactive yellow 160 azo dye[J]. Electrochimica Acta, 2016, 206:307-316. |
[15] | LI X H, JIN X D, ZHAO N N, et al. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell[J]. Bioresource Technology, 2017, 228:322-329. |
[16] | ZHANG H, LIU X, MA J, et al. Activation of peroxymonosulfate using drinking water treatment residuals for the degradation of atrazine[J]. Journal of Hazardous Materials, 2018, 344:1220-1228. |
[17] | LIU Q R, DUAN X G, SUN H Q, et al. Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation[J]. The Journal of Physical Chemistry C, 2016, 120(30):16871-16878. |
[18] | SAYED M. Efficient removal of phenol from aqueous solution by the pulsed high-voltage discharge process in the presence of H2O2[J]. Chemistry International, 2015, 1(2):81-86. |
[19] | FAN W P, BU W B, SHEN B, et al. Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy[J]. Advanced Materials, 2015, 27(28):4155-4161. |
[20] | LI X N, WANG Z H, ZHANG B, et al. FexCo3-xO4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate[J]. Applied Catalysis B:Environmental, 2016, 181:788-799. |
[21] | LIU C N, PAN D Y, TANG X Y, et al. Degradation of Rhodamine B by the α-MnO2/peroxymonosulfate system[J]. Water, Air, & Soil Pollution, 2016, 227(3):92. |
[22] | SAPUTRA E, MUHAMMAD S, SUN H Q, et al. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation[J]. Environmental Science & Technology, 2013, 47(11):5882-5887. |
[23] | CHEN X Y, CHEN J W, QIAO X L, et al. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using acid orange 7 as a model compound[J]. Applied Catalysis B:Environmental, 2008, 80(1):116-121. |
[24] | SHI P H, ZHU S B, ZHENG H A, et al. Supported Co3O4 on expanded graphite as a catalyst for the degradation of orange Ⅱ in water using sulfate radicals[J]. Desalination and Water Treatment, 2014, 52(16-18):3384-3391. |
[25] | WEI W, YANG S B, ZHOU H X, et al. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage[J]. Advanced Materials, 2013, 25(21):2909-2914. |
[26] | LIU J, ZHAO Z W, SHAO P H, et al. Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation[J]. Chemical Engineering Journal, 2015, 262:854-861. |
[27] | WANG Y X, SUN H Q, ANG H M, et al. 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate:Structure dependence and mechanism[J]. Applied Catalysis B:Environmental, 2015, 164:159-167. |
[28] | CHANDRA V, PARK J, CHUN Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal[J]. ACS nano, 2010, 4(7):3979-3986. |
[29] | GUAN Y H, MA J, LI X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science & Technology, 2011, 45(21):9308-9314. |
[30] | ZHAO J Y, ZHANG Y B, QUAN X, et al. Enhanced oxidation of sulfamethoxazole using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature[J]. Separation and Purification Technology, 2010, 71(3):302-307. |
[31] | WANG Y X, INDRAWIRAWAN S, DUAN X G, et al. New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO2 nanostructures[J]. Chemical Engineering Journal, 2015, 266:12-20. |
[32] | SRIDHARAN K, PARK T J. Thorn-ball shaped TiO2 nanostructures:Influence of Sn2+ doping on the morphology and enhanced visible light photocatalytic activity[J]. Applied Catalysis B:Environmental, 2013, 134-135:174-184. |
[33] | LUO J S, LIU J L, ZENG Z Y, et al. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability[J]. Nano Letters, 2013, 13(12):6136-6143. |
[34] | LIU J T, GE X, YE X X, et al. 3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions[J]. Journal of Materials Chemistry A, 2016, 4(5):1970-1979. |
[35] | SHAO J J, LI W Y, ZHOU X Y, et al. Magnetic-field-assisted hydrothermal synthesis of 2×2 tunnels of MnO2 nanostructures with enhanced supercapacitor performance[J]. CrystEngComm, 2014, 16(43):9987-9991. |
[36] | REN Y M, LIN L Q, MA J, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water[J]. Applied Catalysis B:Environmental, 2015, 165:572-578. |
[37] | NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3):1027-1284. |
[38] | BARD A J, PARSONS R, JORDAN J. Standard potentials in aqueous solution[M]. New York:CRC Press, 1985. |
[39] | 丁耀彬. 基于过渡金属氧化物催化活化过一硫酸盐高级氧化方法及其在有机污染物降解中的应用[D]. 武汉:华中科技大学, 2013. DING Y B. Advanced oxidation technologies based on acti-vation of peroxymonosulfate by transition metal oxides for degradation of organic pollutants[D]. Wuhan:Huazhong University of Science and Technology, 2013(in Chinese). |