全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

H2O2改性对聚丙烯腈原丝化学结构的影响
Influence of modification with H2O2 on chemical structure of polyacrylonitrile precursor

DOI: 10.13801/j.cnki.fhclxb.20180417.002

Keywords: 聚丙烯腈原丝,H2O2,改性,氮结构,环化反应,径向结构
polyacrylonitrile precursor
,H2O2,modification,nitrogen structure,cyclization,radial structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

为节省预氧化进程的能耗和时间并优化聚丙烯腈(PAN)预氧纤维的性能,用H2O2改性PAN原丝,使其提前环化。采用FTIR、XPS等方法表征不同处理温度获得的未改性和改性PAN原丝。结果表明:H2O2水溶液在60℃改性PAN原丝时,H2O2可引发氰基环化,末端环发生亚胺、烯胺互变异构,由此出现亚氰基、类芳香伯胺;改性温度越高,改性PAN原丝的亚氰基含量、共轭程度越大。在模拟稳定化过程中,改性PAN原丝的类芳香伯胺可在较低温度下引发相邻氰基环化。使用氨水(NH3H2O)作为助剂获得改性PAN原丝,与未改性PAN原丝经历相同的预氧化进程,改性后的PAN原丝能在较短时间内达到适合的预氧化程度,且PAN预氧纤维径向结构的均匀性被改善,由此获得热稳定性更高的PAN预氧纤维。 In order to save energy consumption and time of the pre-oxidation process and optimize the performance of polyacrylonitrile(PAN) pre-oxidized fiber, PAN precursor could cyclize in advance with modification with H2O2. The unmodified and modified PAN precursor treated at different temperatures was analyzed by FTIR and XPS, et al. The results show that the modification with H2O2 aqueous solution at 60℃ induces nitrile of the PAN precursor to cyclize and terminal ring structure tautomerizes, hence it brings about imine and quasi-aromatic primary amine. With the increase of the modification temperature, the content and conjugation degree of the imine of modified PAN precursor is promoted. In the process of the simulated stabilization, quasi-aromatic primary amine of the modified PAN precursor could induce adjacent nitrile to cyclize at lower temperature. The modified PAN precursor with NH3H2O as additives experiences the same pre-oxidation process as the unmodified PAN precursor. The former can reach suited pre-oxidation degree within a short time and the radial structure of PAN pre-oxidized fiber becomes more uniform, so that the PAN pre-oxidized fiber which has higher thermostability can be obtained. 国家自然科学基金联合基金(U1362205);国家863项目(2015AA03A202

References

[1]  翁诗甫. 傅里叶变换红外光谱分析(第二版)[M]. 北京:化学工业出版社, 2010. WENG S F. Fourier translation infrared spectroscopy analysis(Ⅱ)[M]. Beijing:Chemical Industry Press, 2010(in Chinese).
[2]  LEI S, CAO W Y, FU Z Y, et al. The conjugated plane formed in polyacrylonitrile during thermal stabilization[J]. Journal of Applied Polymer Science, 2016, 133(36):43890.
[3]  肖士洁. 聚丙烯腈热稳定化反应机理及动力学研究[D]. 北京:北京化工大学, 2012. XIAO S J. Mechanism and kinetics during thermal stabilization of polyacrylonitrile[D]. Beijing:Beijing University of Chemical Technology, 2012(in Chinese).
[4]  贺福. 碳纤维及石墨纤维[M]. 北京:化学工业出版社, 2010. HE F. Carbon fiber and graphite fiber[M]. Beijing:Chemical Industry Press, 2010(in Chinese).
[5]  刘杰, 禹化果, 薛岩, 等. 聚丙烯腈纤维热应力与碳纤维结构及性能的关联性[J]. 复合材料学报, 2014, 31(1):66-72. LIU J, YU H G, XUE Y, et al. Relationship between the thermal stress of polyacrylonitrile fibers and the structure and properties of resulting carbon fibers[J]. Acta Materiae Compositae Sinica, 2014, 31(1):66-72(in Chinese).
[6]  王延相, 王成国, 张旺玺, 等. 化学表面处理对PAN预氧纤维的影响[J]. 金山油化纤, 2002, 21(1):5-9. WANG Y X, WANG C G, ZHANG W X, et al. The influences of chemical surface treatment on PAN pre-oxidized fibers[J]. Jinshang Fiber, 2002, 21(1):5-9(in Chinese).
[7]  李崇俊, 王华, 徐永花, 等. 四元共聚及氨化改性PAN原丝及其碳纤维研究[J]. 高科技纤维与应用, 2012, 37(3):11-20. LI C J, WANG H, XU Y H, et al. A tetra-copolymerization and its ammoniating modification on PAN based precursors and carbon fibers[J]. Hi-Tech Fiber & Application, 2012, 37(3):11-20(in Chinese).
[8]  COLLINS G L, THOMAS N W, WILLIAMS G E. Kinetic relationships between heat generation and nitrile consumption in the reaction of poly(acrylonitrile) in air at 265℃[J]. Carbon, 1988, 26(5):671-679.
[9]  KRZYSZTOF S. Temperature-time sieve-A case of nitrogen in coal[J]. Energy & Fuel, 2004, 18(2):405-409.
[10]  RAYMUNDO P E, CAZORLA A D, LINARES S A, et al. Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin[J]. Carbon, 2002, 40(4):597-608.
[11]  禹凡. PAN纤维含氮结构的演变[D]. 北京:北京化工大学, 2015. YU F. Evolution of nitrogen structure in PAN fibers[D]. Beijing:Beijing University of Chemical Technology, 2015(in Chinese).
[12]  张琪, 华鲁, 雷帅, 等. 聚丙烯腈纤维烯胺结构的形成及其氧化特性的研究[J]. 高科技纤维与应用, 2014, 39(2):24-28. ZHANG Q, HUA L, LEI S, et al. The formation and oxidation property of the enamine during the stabilization of polyacrylonitrile fiber[J]. Hi-Tech Fiber & Application, 2014, 39(2):24-28(in Chinese).
[13]  MITTAL J, MATHUR R B, BAHL O P, et al. Post spinning treatment of PAN fibers using succinic acid to produce high performance carbon fibers[J]. Carbon, 1998, 36(7):893-897.
[14]  OUYANG Q, WANG H J, CHENG L, et al. Effect of boric acid on the stabilization of poly(acrylonitrile-co-itaconic acid)[J]. Journal of Polymer Research, 2007, 14(6):497-503.
[15]  POPOVSKA N, MLADENOV I. Untersuchungen zur herstellung von kohlenstoffasern auf der basis von mit wasserstoffperoxid modifizierten PAN-fasern[J]. Carbon, 1983, 21(1):33-38.
[16]  LIU L Q, CHEN H F, PAN D. Modification of polyacrylonitrile precursor fiber with hydrogen peroxide[J]. Fibers and Polymers, 2012, 13(5):587-592.
[17]  张国臣. 过氧化氢的发展及应用[J]. 吉化科技, 1997(1):30-37. ZHANG G C. The development and application of hydrogen peroxide[J]. Jilin Science & Technology, 1997(1):30-37(in Chinese).
[18]  冯闻, 肖士洁, 昌志龙, 等. PAN大分子预氧化结构形成及演变机理[J]. 北京化工大学学报:自然科学版, 2011, 38(4):58-63. FENG W, XIAO S J, CHANG Z L, et al. Evolution of PAN macromolecular structural transformations during pre-oxidative stabilization[J]. Journal of Beijing University of Chemical Technology:Natural Science, 2011, 38(4):58-63(in Chinese).
[19]  GRASSIE N, MCGUCHAN R. Pyrolysis of polyacrylonitrile and related polymers-IV. Thermal analysis of polyacrylonitrile in the presence of additives[J]. European Polymer Journal, 1971, 7(11):1503-1541.
[20]  CLARKE A J, BAILEY J E. Oxidation of acrylic fibers for carbon fiber formation[J]. Nature, 1973, 243(5403):146-150.
[21]  齐帅, 李常清, 贾龙飞, 等. 溶解法分级聚丙烯腈纤维精细结构[J]. 高分子材料科学与工程, 2017, 33(4):29-34. QI S, LI C Q, JIA L F, et al. Fine structure of polyacrylonitrile fibers classified by dissolution method[J]. Polymer Materials Science and Engineering, 2017, 33(4):29-34(in Chinese).
[22]  WU G P, LU C X, WU X P, et al. X-ray photoelectron spectroscopy investigation into thermal degradation and stabilization of polyacrylonitrile fibers[J]. Journal of Applied Polymer Science, 2004, 94(4):1705-1709.
[23]  罗莎, 高爱君, 王统帅, 等. PAN纤维高温环境下氮结合态演变规律的研究[J]. 化工新型材料, 2012, 40(1):84-87. LUO S, GAO A J, WANG T S, et al. Research on evolution of the combination state of N in PAN fibers in high-temperature environment[J]. New Chemical Materials, 2012, 40(1):84-87(in Chinese).
[24]  COLEMAN M M, PETCAVICH R J. Fourier transform infrared studies on the thermal degradation of polyacrylonitrile[J]. Journal of Polymer Science:Polymer Physics Edition, 1978, 16(5):821-832.
[25]  刘杰, 王新文, 马兆昆, 等. 热氧稳定化过程温度效应对PAN纤维径向氧元素扩散速率的作用[J]. 复合材料学报, 2012, 29(2):26-33. LIU J, WANG X W, MA Z K, et al. Function of temperature effect on the radial pervasion of oxygen elements during the stabilization of polyacrylonitrile fibers[J]. Acta Materiae Compositae Sinica, 2012, 29(2):26-33(in Chinese).
[26]  钟珊, 徐帆, 雷帅, 等. PAN预氧纤维径向结构的光密度法研究[J]. 材料工程, 2017, 45(2):65-71. ZHONG S, XU F, LEI S, et al. Optical density method of radial structure of PAN-based pre-oxidized fibers[J]. Journal of Materials Engineering, 2017, 45(2):65-71(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133