全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

RGO-MIL-68(Fe)复合材料的静电自组装合成及光催化还原Cr(Ⅵ)的性能
Preparation of RGO-MIL-68(Fe) composites by a simple self-assembly strategy for photocatalytic reduction of Cr(Ⅵ)

DOI: 10.13801/j.cnki.fhclxb.20190301.002

Keywords: 静电自组装,MIL-68(Fe),还原氧化石墨烯(RGO)-MIL-68(Fe)复合物,光催化,Cr (Ⅵ)
self-assembly
,MIL-68(Fe),reduced graphene oxide (RGO)-MIL-68(Fe) composite,photocatalysis,Cr(Ⅵ)

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用静电自组装方法制备氧化石墨烯(GO)-MIL-68(Fe)复合物,并通过简单溶剂热处理,将GO还原为还原氧化石墨烯(RGO),首次制得RGO-MIL-68(Fe)复合物。通过XRD、FESEM、紫外-可见漫反射光谱(UV-Vis DRS)等方法对RGO-MIL-68(Fe)复合催化剂的晶体结构、形貌、光吸收性能等物理化学性质进行表征。在可见光照射下,以草酸铵((NH4)2C2O4)为牺牲剂,对RGO-MIL-68(Fe)复合材料进行光催化还原Cr(Ⅵ)性能评价,结果表明,只需复合少量的RGO,MIL-68(Fe)的光催化活性就能显著地提高。当RGO含量为1wt%时,RGO-MIL-68(Fe)复合材料表现出最优的光催化活性,反应60 min,体系中的Cr(Ⅵ)的还原率高达81%。结合电化学分析可知,这主要是由于RGO的引入在增强MIL-68(Fe)光吸收性能的同时也促进了光生载流子的分离。 Novel photocatalysts reduced graphene oxide (RGO)-MIL-68(Fe) were synthesized via an electrostatically derived self-assembly of MIL-68(Fe) with graphene, followed by solvothermal approach. The as-prepared RGO-MIL-68(Fe) composites were characterized by XRD, FESEM and UV-vis diffuse reflectance spectra (UV-vis DRS). The photocatalytic activity for reduction of Cr(Ⅵ) over RGO-MIL-68(Fe) composites were investigated under visible light irradiations using ammonium oxalate ((NH4)2C2O4) as a sac-rificial agent. The results show that the reduction of Cr(Ⅵ) over MIL-68(Fe) can be significantly increased by loading RGO. An optimum activity is achieved over 1wt%RGO-MIL-68(Fe) composite, giving a corresponding Cr(Ⅵ) reduction ratio of 81% after 60 min under visible light irradiation. Combining with photoelectrochemical analyses, it can be revealed that the introduction of RGO will minimize the recombination of photogenerated electron-hole pairs. 陕西理工大学校级科研基金(SLGKY2017-11);福建省教育厅项目(JAT160767)和陕西理工大学合成气催化转化研究团队资

References

[1]  ZHAO M T, HUANG Y, PENG Y W, et al. Two-dimensional metal-organic framework nanosheets:Synthesis and applications[J]. Chemical Society Reviews, 2018, 47(16):6267-6295.
[2]  LIANG R W, LUO S G, JING F F, et al. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs)[J]. Applied Catalysis B:Environmental, 2015, 176-177:240-248.
[3]  李赵华, 刘成宝, 钱君超, 等. 超级电容器用CeO2-MnO/3D石墨烯复合材料的制备[J]. 复合材料学报, 2017, 34(2):423-429. LI Z H, LIU C B, QIAN J C, et al. Synthesis of CeO2-MnO/3D graphene composite for supercapacitors[J]. Acta Materiae Compositae Sinica, 2017, 34(2):423-429(in Chinese).
[4]  MOHIT S, RICHA R, SHAIKH M M. A fascinating multitasking Cu-MOF/RGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors[J]. Journal of Materials Chemistry A, 2016, 4(42):16432-16445.
[5]  IDRIS A, HASSAN N, RASHID R, et al. Kinetic and regeneration studies of photocatalytic magnetic separable beads for chromium (Ⅵ) reduction under sunlight[J]. Journal of Hazardous Materials, 2011, 186(1):629-635.
[6]  ZHANG Y H, ZHANG N, TANG Z R, et al. Graphene transforms wide band gap ZnS to a visible light photocatalyst:The new role of graphene as a macromolecular photosensitizer[J]. ACS Nano, 2012, 6(11):9777-9789.
[7]  DONG Y, CAO L Q, LI J, et al. Facile preparation of UiO-66/PAM monoliths via CO2-in-water HIPEs and their applications[J]. RSC Advances, 2018, 8(56):32358-32367.
[8]  YANG Q H, QIANG X, JIANG H L. Metal-organic frameworks meet metal nanoparticles:Synergistic effect for enhanced catalysis[J]. Chemical Society Reviews, 2017, 46(15):4774-4808.
[9]  CHEN Y J, GE H, WEI L, et al. Reduction degree of reduced graphene oxide (RGO) dependence of photocatalytic hydrogen evolution performance over RGO/ZnIn2S4 nanocomposites[J]. Catalysis Science & Technology, 2013, 3(7):1712-1717.
[10]  LIANG R W, SHEN L J, JING F F, et al. Preparation of MIL-53(Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact:Efficient visible-light photocatalysts[J]. ACS Applied Materials & interfaces, 2015, 7(18):9507-9515.
[11]  SHEN L J, HUANG L J, LIANG S J, et al. Electrostatically derived self-assembly of NH2-mediated zirconium MOFs with graphene forphotocatalytic reduction of Cr(Ⅵ)[J]. RSC Advances, 2014, 4:2546-2549.
[12]  HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339-1339.
[13]  SZABó T, TOMBáCZ E, ILLéS E, et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides[J]. Carbon, 2006, 44(3):537-545.
[14]  BORDIGA S, BUZZONI R, GEOBALDO F, et al. Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods[J]. Journal of Catalysis, 1996, 158(2):486-501.
[15]  WANG L, LI X, TENG W, et al. Efficient photocatalytic reduction of aqueous Cr(Ⅵ) over flower-like SnIn4S8 microspheres under visible light illumination[J]. Journal of Hazardous Materials, 2013, 244-245:681-688.
[16]  FATEEVA A, HORCAJADA P, DEVIC T, et al. Synthesis, structure, characterization, and redox properties of the porous MIL-68(Fe) solid[J]. European Journal of Inorganic Chemistry, 2010, 2010(24):3789-3794.
[17]  任芳, 朱光明, 任鹏刚. 纳米石墨烯复合材料的制备及应用研究进展[J]. 复合材料学报, 2014, 31(2):263-272. REN F, ZHU G M, REN P G. The latest advances in preparation and application of nano graphene composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):263-272(in Chinese).
[18]  ZHANG J W, ZHANG H T, DU Z Y, et al. Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform[J]. Chemical Communications, 2014, 50(9):1092-1094.
[19]  JING F F, LIANG R W, XIONG J H, et al. MIL-68(Fe) as an efficient visible-light-driven photocatalyst for the treatment of a simulated waste-water contain Cr(Ⅵ) and malachite green[J]. Applied Catalysis B:Environmental, 2016, 206:9-15.
[20]  YANG M Q, ZHANG N, XU Y J. Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation:A comparative study[J]. ACS Applied Materials & Interfaces, 2013, 5(3):1156-1164.
[21]  LIANG R W, JING F F, YAN G, et al. Synthesis of CdS-decorated MIL-68(Fe) nanocomposites:Efficient and stable visible light photocatalysts for the selective reduction of 4-nitroaniline to p-phenylenediamine in water[J]. Applied Catalysis B:Environmental, 2017, 218:452-459.
[22]  LAURIER K G, VERMOORTELE F, AMELOOT R, et al. Iron (Ⅲ)-based metal-organic frameworks as visible light photocatalysts[J]. Journal of the American Chemical Society, 2013, 135(39):14488-14491.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133