全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

凹凸棒/Bi2WO6光催化复合材料的制备及性能
Preparation and performance of attapulgite/Bi2WO6 photocatalytic composite

DOI: 10.13801/j.cnki.fhclxb.20181203.001

Keywords: Bi2WO6,凹凸棒黏土,复合材料,水热反应,光催化
Bi2WO6
,attapulgite clay,composite,hydrothermal reaction,photocatalytic

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于Bi2WO6半导体具有无毒、强氧化性、强可见光响应等特点,呈现出优异的光催化活性。然而,Bi2WO6具有比表面小和吸附能力差的缺点限制了其实际应用。利用凹凸棒黏土的强吸附性,通过调节水热反应温度和时间、凹凸棒黏土与Bi2WO6的质量比及前驱体溶液的pH值等条件制备凹凸棒/Bi2WO6光催化复合材料,并对其进行XRD、SEM、N2吸附-解吸和紫外-可见漫反射光谱(UV-vis DRS)等表征测试。研究表明,在180℃水热反应18 h、凹凸棒黏土与Bi2WO6的质量比为6%、凹凸棒/Bi2WO6光催化复合材料前驱体溶液的初始pH=1时,凹凸棒/Bi2WO6光催化复合材料具有3D纳米球状分层结构,且在可见光下对罗丹明B具有较好的光催化性能。 The Bi2WO6 semiconductor possesses excellent photocatalytic performance due to its nontoxicity, strong oxidizing power and visible-light responsiveness. However, the small specific surface area and poor adsorption capacity limit its practical applications. The taking advantage of strong adsorption abilities of attapulgite clay to prepare attapulgite/Bi2WO6 photocatalytic composite by adjusting the temperature and time of hydrothermal reaction, the mass ratio, and the pH value of the precursor solution. The as-prepared photocatalyst was characterized by XRD, SEM, N2 adsorption-desorption measurements and UV-visible diffused reflectance spectra (UV-vis DRS). The results show that the attapulgite/Bi2WO6 photocatalytic composite has 3D nanospheres hierarchical structure and exhibit a better photocatalytic activity for Rhodamine B under visible light while it is prepared under hydrothermal reaction at 180℃ for 18 h, the mass ratio of attapulgite clay to Bi2WO6 is 6%, and the initial pH=1 for the precursor solution of attapulgite/Bi2WO6 photocatalytic composite. 山西省高等学校科技创新研究项目(163140105-S

References

[1]  任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1):84-94. REN N Q, ZHOU X J, GUO W Q, et al. A review on treatment methods of dye wastewater[J]. CIESC Jorunal, 2013, 64(1):84-94(in Chinese).
[2]  CHONG M N, JIN B, CHOW C W, et al. Recent developments in photocatalytic water treatment technology:A review[J]. Water Treatment Technology, 2010, 44(10):2997-3027.
[3]  YANG H M, ZHANG K, SHI R R, et al. Sol-gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions[J]. Journal of Alloy and Compounds, 2006, 413(1-2):302-306.
[4]  王佳忆, 王学江, 黄嘉瑜, 等. Br-N共掺杂TiO2/磁性炭复合材料的制备及其可见光催化性能[J]. 复合材料学报, 2017, 34(4):890-898. WANG J Y, WANG X J, HUANG J Y, et al. Preparation and photocatalytic performance of Br-N codoped TiO2/magnetic carbon composites[J]. Acta Materiae Compositae Sinica, 2017, 34(4):890-898(in Chinese).
[5]  ZHANG L S, WANG H L, CHEN Z G, et al. Bi2WO6 micro/nano-structures:Synthesis, modifications and visible-light-driven photocatalytic applications[J]. Applied Catalysis B, 2011, 106(1-2):1-13.
[6]  LIN X, LIU Z, GUO X, et al. Controllable synthesis and photocatalytic activity of spherical, flower-like and nanofibrous bismuth tungstates[J]. Materials Science and Engineering B, 2014, 188:35-42.
[7]  郭亚丹. 新型复合光催化剂的构筑、微结构调控及其降解有机污染物研究[D]. 武汉:武汉理工大学, 2013. GUO Y D. Construction and tunable microstructure of novel composite photocatalysts and their photocatalytic activity for degradation of organic pollutants[D]. Wuhan:Wuhan University of Technology, 2013(in Chinese).
[8]  SHI Y Y, YANG Z W, WANG B, et al. Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskite-supported Cu2O-TiO2 composite[J]. Applied Clay Science, 2016, 119:311-320.
[9]  吴文涛, 李妍妍, 卢茂骥, 等. 凹凸棒黏土-针铁矿改性麦秸木质陶瓷的微观结构[J]. 复合材料学报, 2015, 32(1):131-137. WU W T, LI Y Y, LU M J, et al. Microstructure of attapulgite-goethite modified woodceramics from wheat straw[J]. Acta Materiae Compositae Sinica, 2015, 32(1):131-137(in Chinese).
[10]  SHI Y Y, HU Y D, ZHANG L, et al. Palygorskite supported BiVO4 photocatalyst for tetracycline hydrochloride removal[J]. Applied Clay Science, 2017, 137:249-258.
[11]  LUO J, DUAN G R, WANG W W. Size-controlled synthesis of palygorskite/Ag3PO4 nanocomposites with enhanced visible-light photocatalytic performance[J]. Applied Clay Science, 2017, 143:273-278.
[12]  YAO S S, WEI J Y, HUANG B B, et al. Morphology modulated growth of bismuth tungsten oxide nanocrystals[J]. Journal of Solid State Chemistry, 2009, 182(2):236-239.
[13]  ZHANG G K, DING X M, HE F S, et al. Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite[J]. Langmuir, 2008, 24(3):1026-1030.
[14]  李祥慰. 改性BiOI和Bi2WO6的制备及其可见光催化性能研究[D]. 长沙:湖南大学, 2014. LI X W. Synthesis and photocatalytic properties of modified BiOI and Bi2WO6[D]. Changsha:Hunan University, 2014(in Chinese).
[15]  ZHAO D F, ZHOU J, LIU N. Characterization of the structure and catalytic activity of copper modified palygorskite/TiO2 (Cu2+-PG/TiO2) catalysts[J]. Materials Science and Engineering A, 2006, 431(1-2):256-262.
[16]  刘春玲, 毕菲非, 张文杰, 等. 负载型SrTiO3/HZSM-5光催化材料制备与性能研究[J]. 材料工程, 2016, 44(12):22-27. LIU C L, BI F F, ZHANG W J, et al. Preparation and properties of supported SrTiO3/HZSM-5 photocatalyst[J]. Journal of Materials Engineering, 2016, 44(12):22-27(in Chinese).
[17]  CARMONA R J, VELASCO L F, HIDALGO M C, et al. Boosting the visible-light photoactivity of Bi2WO6 using acidic carbon additives[J]. Applied Catalysis A:General, 2015, 505:467-477.
[18]  MI Y W, ZENG S Y, LI L, et al. Solvent directed fabrication of Bi2WO6 nanostructures with different morphologies:Synthesis and their shape-dependent photocatalytic properties[J]. Materia Research Bulletin, 2012, 47(9):2623-2630.
[19]  刘旺平, 王鑫, 张帅, 等. Ag和介孔碳改性Bi2WO6光催化剂的合成及其可见光下的光催化性能[J]. 复合材料学报, 2015, 32(4):1187-1193. LIU W P, WANG X, ZHANG S, et al. Synthesis of Ag and mesoporous carbon modified Bi2WO6 photocatalyst and its photocatalytic property in visible light[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1187-1193(in Chinese).
[20]  安兴才, 刘刚, 韩立娟, 等. V-N共掺杂TiO2/凹凸棒土光催化复合材料的制备及光催化性能[J]. 复合材料学报, 2014, 31(2):423-428. AN X C, LIU G, HAN L J, et al. Preparation and photocatalytic properties of V-N codoped TiO2/attapulgite photocatalytic composite materials[J]. Acta Materiae Compositae Sinica, 2014, 31(2):423-428(in Chinese).
[21]  陈渊, 杨家添, 谢祖芳, 等. 蛋挞状Bi2WO6催化剂的制备及其光催化性能[J]. 人工晶体学报, 2014, 43(2):380-387. CHEN Y, YANG J T, XIE Z F, et al. Preparation and Photocatalytic performance of egg-tart-like Bi2WO6 catalysts[J]. Journal of Synthetic Crystals, 2014, 43(2):380-387(in Chinese)
[22]  姚秉华, 王连俊, 张文, 等. Bi2WO6花瓣状微球的无助剂合成及其光催化性能[J]. 化学反应工程与工艺, 2013, 29(2):134-139. YAO B H, WANG L J, ZHANG W, et al. Petal-like Bi2WO6 microspheres from no-additive synthesis and its photocatalytic performance[J]. Chemical Reaction Engineering and Technology, 2013, 29(2):134-139(in Chinese).
[23]  邢光建, 李钰梅, 赵铮, 等. 不同形貌的钨酸铋纳米材料的制备及其光催化性能[J]. 人工晶体学报, 2010, 39(5):1265-1271. XING G J, LI Y M, ZHAO Z, et al. Preparation and photocatalytic properties of bismuth tungsten oxide nano materials with different morphologies[J]. Journal of Synthetic Crystals, 2010, 39(5):1265-1271(in Chinese).
[24]  黄毅, 申玥, 吴季怀, 等. 花状Bi2WO6光催化剂的制备及性能研究[J]. 功能材料, 2010, 41(s1):52-56. HUANG Y, SHEN Y, WU J H, et al. Preparation and properties of flower-like Bi2WO6 photocatalyst[J]. Journal of Functional Materials, 2010, 41(s1):52-56(in Chinese)
[25]  余忠雄. 纳米钨酸铋光催化材料的制备及其性能研究[D]. 广州:暨南大学, 2016. YU Z X. Preparation, characterization and photocatalytic activities of nano-Bi2WO6[D]. Guangzhou:Jinan University, 2016(in Chinese).
[26]  LIU S W, YU J G. Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers[J]. Journal of Solid State Chemistry, 2008, 181(5):1048-1055.
[27]  DENG L Y, XIE Y, ZHANG G K. Synthesis of C-Cl-codoped titania/attapulgite composites with enhanced visible-light photocatalytic activity[J]. Chinese Journal of Catalysis, 2017, 38(2):379-388.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133