全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

多级复合材料蜂窝结构的力学性能
Mechanical properties of hierarchical composite honeycomb structures

DOI: 10.13801/j.cnki.fhclxb.20181023.004

Keywords: 复合材料,蜂窝结构,多级结构,平压性能,三点弯曲性能
composites
,honeycomb structure,hierarchical structure,out-of-plane compressive performance,three-point bending performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据多级结构设计思想,把高性能聚甲基丙烯酰亚胺(PMI)泡沫加入到单向碳纤维增强树脂复合材料之间,制备多级复合材料蜂窝结构。对多级复合材料蜂窝结构的平压性能进行了研究,包括多级复合材料蜂窝结构平压性能的理论预报和试验验证。研究了多级复合材料蜂窝结构平压性能随结构等效密度变化的关系。并对多级复合材料蜂窝结构的三点弯曲性能进行了研究,主要包括理论预报和试验验证。通过理论研究对结构的失效模式进行了预报,绘制了失效模式机制图,并通过三点弯曲试验对理论预报结果进行了验证。 According to hierarchical structural design idea, a high-performance polymethylallyl imide (PMI) foam was added between the unidirectional carbon fiber reinforced resin composite to prepare hierarchical composite honeycomb structure. The out-of-plane compressive performance of hierarchical composite honeycomb structures were studied, including the theoretical prediction and experimental verification of the out-of-plane compressive performance of hierarchical composite honeycomb structures. The relationship between the out-of-plane compressive properties of hierarchical composite honeycomb structure and the structural equivalent density was studied. The three-point bending performance of hierarchical composite honeycomb structure was studied, including theoretical prediction and experimental verification. The failure mode of the structure was predicted by theoretical research, the failure mode mechanism diagram was drawn, and the theoretical prediction results were verified by three-point bending test. 国家重点基础研究发展规划(973项目)(2011CB610303

References

[1]  ZHANG Y, LIU T, REN H, et al. Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures[J]. Composite Structures, 2018, 195:45-59.
[2]  ZHANG D, FEI Q, JIANG D, et al. Numerical and analytical investigation on crushing of fractal-like honeycombs with self-similar hierarchy[J]. Composite Structures, 2018, 192:289-299.
[3]  FENG L J, YANG Z T, YU G C, et al. Compressive and shear properties of carbon fiber composite square honeycombs with optimized high-modulus hierarchical phases[J]. Composite Structures, 2018, 210:845-856.
[4]  YIN H, HUANG X, SCARPA F, et al. In-plane crashworthiness of bio-inspired hierarchical honeycombs[J]. Composite Structures, 2018, 192:516-527.
[5]  YU Y, YING L, HOU W B, et al. Failure analysis of adhesively bonded steel corrugated sandwich structures under three-point bending[J]. Composite Structures, 2018, 184:256-268.
[6]  PACZOS P, WICHNIAREK R, MAGNUCKI K. Three-point bending of sandwich beam with special structure of the core[J]. Composite Structures, 2018, 201:676-682.
[7]  RUSSELL B P, LIU T, FLECK N A, et al. Quasistatic three-point bending of carbon fiber sandwich beams with square honeycomb cores[J]. Journal of Applied Mechanics, 2011, 78(3):031008.
[8]  LI X, WU L, MA L, et al. Fabrication and mechanical properties of composite pyramidal truss core sandwich panels with novel reinforced frames[J]. Journal of Reinforced Plastics and Composites, 2016, 35(16):1260-1274.
[9]  DONG L, WADLEY H. Mechanical properties of carbon fiber composite octet-truss lattice structures[J]. Composites Science & Technology, 2015, 119:26-33.
[10]  C?Té F, RUSSELL B P, DESHPANDE V S, et al. The through-thickness compressive strength of a composite sandwich panel with a hierarchical square honeycomb sandwich core[J]. Journal of Applied Mechanics, 2009, 76(6):61004.
[11]  DU B, CHEN L, WU W, et al. A novel hierarchical thermoplastic composite honeycomb cylindrical structure:Fabrication and axial compressive properties[J]. Composites Science & Technology, 2018, 164:136-145.
[12]  RYVKIN M, SHRAGA R. Fracture toughness of hierarchical self-similar honeycombs[J]. International Journal of Solids & Structures, 2018, 152-153:151-160.
[13]  于国财. 多功能复合材料蜂窝结构的导热及力学性能[D]. 哈尔滨:哈尔滨工业大学, 2016. YU G C. Thermal and mechanical properties of mul tifunctional composite honeycomb sandwich structure[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese).
[14]  SUN G, JIANG H, FANG J, et al. Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact[J]. Materials & Design, 2016, 110:705-719.
[15]  ZHANG Y, LU M, WANG C H, et al. Out-of-plane crashworthiness of bio-inspired self-similar regular hierarchical honeycombs[J]. Composite Structures, 2016, 144:1-13.
[16]  范华林, 金丰年, 方岱宁. 格栅结构力学性能研究进展[J]. 力学进展, 2008, 30(1):35-52. FAN H L, JIN F N, FANG D N. Structural mechanics of lattice grids[J]. Progress in Mechanics, 2008, 30(1):35-52(in Chinese).
[17]  FAN H L, MENG F H, YANG W. Sandwich panels with Kagome lattice cores reinforced by carbon fibers[J]. Composite Structures, 2007, 81(4):533-539.
[18]  C?TéA F, DESHPANDEA V S, FLECK N A, et al. The compressive and shear responses of corrugated and diamond lattice materials[J]. International Journal of Solids and Structures, 2006, 43(20):6220-6242.
[19]  HAN D Y, TSAI S W. Interlocked composite grids design and manufacturing[J]. Journal of Composite Materials, 2003, 37(4):287-316.
[20]  熊健. 轻质复合材料新型点阵结构设计及其力学行为研究[D]. 哈尔滨:哈尔滨工业大学, 2013. XIONG J. Design and mechanical behavior of lightweight composite innovative lattice truss structures[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).
[21]  ALLEN H G. Analysis and design of structural sandwich panels[M]. Oxford:Pergamon Press, 1969.
[22]  PETRAS A, SUTCLIFFE M P F. Failure mode maps for honeycomb sandwich panels[J]. Composite Structures, 1999, 44(4):237-252.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133