全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

碳纳米管和TiB2混杂增强铜复合材料的电弧侵蚀行为
Arc erosion behavior of carbon nanotubes and TiB2 hybrid reinforced copper composites

DOI: 10.13801/j.cnki.fhclxb.20190109.003

Keywords: CNTs-TiB2/Cu复合材料,混杂增强,电弧侵蚀行为,燃弧能量,材料转移
CNTs-TiB2/Cu composites
,hybrid reinforcement,arc erosion behavior,arc energy,material transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用放电等离子烧结(SPS)工艺制备出不同混杂比例碳纳米管(CNTs)和TiB2混杂增强铜(CNTs-TiB2/Cu)复合材料,对复合材料致密度、硬度、导电率、导热率和显微组织进行了对比和分析。同时对复合材料进行了电接触试验,研究了不同电流条件下CNTs与TiB2混杂比例对CNTs-TiB2/Cu复合材料电弧侵蚀行为的影响。结果表明:随着CNTs与TiB2混杂比例的增加,CNTs-TiB2/Cu复合材料的密度、硬度、导电率和导热率逐渐降低,铜基体晶界分离现象越来越明显;在特定电流条件下,合适的CNTs-TiB2混杂比例可提高CNTs-TiB2/Cu复合材料的抗电弧侵蚀性能;当电流为5 A和10 A时,CNTs与TiB2混杂比例为4∶1的平均燃弧能量、平均燃弧时间和材料转移量达到最低,而电流为15 A时,CNTs与TiB2混杂比例为1∶4的平均燃弧能量、平均燃弧时间和材料转移量达到最低。电弧侵蚀后阴极出现熔池、气孔及熔融金属铺展等特征,且随着CNTs与TiB2混杂比的增加,CNTs-TiB2/Cu复合材料熔池面积减小,气孔数量变少,熔融金属铺展的特征减弱。 Sparks plasma sintering (SPS) process was used to prepare copper matrix composites reinforced with different ratios of carbon nanotubes(CNTs) and TiB2 hybrid. Density, hardness, electrical conductivity, thermal conductivity and microstructure of the composites were compared and analyzed. To investigate the effects of hybrid ratios on the arc erosion behavior of CNTs-TiB2/Cu composites, electrical contact test was carried out at different currents. The results indicate gradual decrease in relative density, hardness, electrical conductivity and thermal conductivity, and an increase in separation of the copper grains with the increasing hybrid ratios. Arc erosion resistance of CNTs-TiB2/Cu composites is improved with appropriate ratios of CNTs to TiB2 under a certain current. The CNTs-TiB2/Cu composite with 4:1 hybrid ratio of CNTs to TiB2 has the lowest average making-arc-energy, average making-arc-durations and material transfer amounts at 5 A and 10 A, while the CNTs-TiB2/Cu composite with 1:4 hybrid ratio of CNTs to TiB2 has the lowest average making-arc-energy, average making-arc-durations and material transfer amounts at 15 A. The molten pool, pores and spread out of molten metal are formed on the cathode after arc erosion. Furthermore, molten pool, pores and spread out of molten metal decreases as the ratios of CNTs to TiB2 increase. 国家自然科学基金(U1502274;51605146);河南省高等学校青年骨干教师培养计划项目(2018GGJS045);中国博士后科学基金资助项目(2018M632769);河南省杰出人才创新基金(182101510003);河南省创新科技团队(C20150014

References

[1]  BEGTRUP G, RAY K G, KESSLER B M, et al. Extreme thermal stability of carbon nanotubes[J]. Physica Status Solidi, 2010, 244(11):3960-3963.
[2]  张晖, 丁秉钧. 纳米复合W-氧化物电极材料的电子发射特性[J]. 稀有金属材料与工程, 2000, 29(1):53-56.ZHANG Hui, DING Bingjun. Electron emission of W-nano-ThO2 electrode[J]. Rare Metal Materials & Engineering, 2000, 29(1):53-56(in Chinese).
[3]  ANDERSON P A. The work function of copper[J]. Physical Review, 1949, 76(3):388-390.
[4]  ZHANG X H, ZHANG Y, TIAN B H, et al. Arc erosion behavior of the Al2O3-Cu/(W, Cr) electrical contacts[J]. Composites Part B:Engineering, 2018, 160:110-118.
[5]  ZHU S X, LIU Y, TIAN B H, et al. Arc erosion behavior and mechanism of Cu/Cr20 electrical contact material[J]. Vacuum, 2017, 143:129-137.
[6]  李国辉, 刘勇, 国秀花, 等. TiB2/Cu复合材料的电弧侵蚀行为[J]. 复合材料学报, 2018, 35(3):616-622.LI Guohui, LIU Yong, GUO Xiuhua, et al. Arc erosion behavior of TiB2/Cu composites[J]. Acta Materiae Compositae Sinica, 2018, 35(3):616-622(in Chinese).
[7]  李忠文, 金慧玲, 李士胜, 等. 混杂增强金属基复合材料的研究进展[J]. 中国材料进展, 2016, 35(9):26-30.LI Zhongwen, JIN Huiling, LI Shisheng, et al. Research and development of hybrid reinforced metal matrix composites[J]. Materials China, 2016, 35(9):26-30(in Chinese).
[8]  QIN Y, GENG L, NI D. Dry sliding wear behavior of extruded titanium matrix composite reinforced by in situ TiB whisker and TiC particle[J]. Journal of Composite Materials, 2011, 46(14):4980-4985.
[9]  ZHOU X, SU D, WU C, et al. Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites[J]. Journal of Nanomaterials, 2012(2):83.
[10]  CARVALHO O, BUCIUMEANU M, MADEIRA S, et al. Dry sliding wear behavior of AlSi-CNTs-SiCp hybrid compo-sites[J]. Tribology International, 2015, 90:148-156.
[11]  TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381(6584):678-680.
[12]  郭忠全, 耿浩然, 郭颖, 等. 纳米碳管增强铜基电接触材料制备的优化设计[J]. 电子元件与材料, 2009, 28(3):45-48. GUO Zhongquan, GENG Haoran, GUO Ying, et al. Optimization design for the preparation process of copper-based electrical contact materials reinforced by carbon nanotube[J]. Electronic Components & Materials, 2009, 28(3):45-48(in Chinese).
[13]  李桂景, 王献辉, 邹军涛, 等. AgTiB2复合材料电弧侵蚀行为研究[J]. 贵金属, 2011, 32(3):36-41. LI Guijing, WANG Xianhui, ZOU Juntao, et al. Investigation on arc erosion behavior of AgTiB2 composite[J]. Precious Metals, 2011, 32(3):36-41(in Chinese).
[14]  庞旭明, 周剑秋, 杨晶歆, 等. 含孔隙及界面热阻的复合材料有效导热系数[J]. 中国有色金属学报, 2016, 26(8):1668-1674.PANG Xuming, ZHOU Jianqiu, YANG Jingxin, et al. Effective thermal conductivity of composite materials containing pore and interface thermal resistance[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(8):1668-1674(in Chinese).
[15]  WU C, YI D, WENG W, et al. Arc erosion behavior of Ag/Ni electrical contact materials[J]. Materials & Design, 2015, 85:511-519.
[16]  叶家健. AgMeO触头材料制备及抗电弧侵蚀性能的研究[D]. 武汉:华中科技大学, 2007.YE Jiajian. Research on arc erosion resistance properties and preparation of Ag-MeO electrical contact material[D]. Wuhan:Huazhong University of Science and Technology, 2007(in Chinese)
[17]  CHEN Z K, SAWA K. Effect of arc behavior on material transfer:A review[C]. IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, 1998, 21(1):310-322.
[18]  MASASHI S, MASAFUMI A. Work function of carbon nanotubes[J]. Carbon, 2001, 39(12):1913-1917.
[19]  KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(21):215502.
[20]  EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586):54-56.
[21]  DAOUSH W M, LIM B K, MO C B, et al. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J]. Materials Science & Engineering A, 2009, 513(11):247-253.
[22]  VARO T, CANAKCI A. Effect of the CNT content on microstructure, physical and mechanical properties of Cu-based electrical contact materials produced by flake powder metallurgy[J]. Arabian Journal for Science & Engineering, 2015, 40(9):2711-2720.
[23]  WANG X, YANG H, LIANG S, et al. Effect of TiB2 particle size on erosion behavior of Ag-4wt%TiB2 composite[J]. Rare Metal Materials & Engineering, 2015, 44(11):2612-2617.
[24]  CHEN Z K, MIZUKOSHI H, SAWA K. Contact erosions patterns of Pd material in DC breaking arcs[C]. IEEE. Transactions on Components, Packaging, and Manufacturing Technology Part A, 1994, 17(1):61-69.
[25]  BASU B, RAJU G B, SURI A K. Processing and properties of monolithic TiB2 based materials[J]. Metallurgical Reviews, 2013, 51(6):352-374.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133