全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

深海纤维增强树脂复合材料圆柱耐压壳力学性能的研究进展
Research progress on mechanical properties of deep-sea fiber reinforced resin composite cylindrical pressure shells

DOI: 10.13801/j.cnki.fhclxb.20190929.003

Keywords: 深海环境,复合材料,圆柱耐压壳,力学性能,数值模拟
deep-sea equipment
,composites,cylindrical pressure shells,mechanical properties,numerical simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

纤维增强树脂复合材料因其轻质和优异力学性能,使其成为了关键深海战略材料,已应用在深海潜水器重大装备。其中,耐压壳是保证深海潜水器安全和稳定的重要部件,与潜水器的质量要求和总体性能密切相关。本文重点关注纤维增强树脂深海圆柱耐压壳,综述其结构设计特性、力学性能试验表征及数值模拟研究进展,并指出目前存在的问题,以期为今后深海复合材料圆柱耐压壳的设计及力学分析提供选材依据。 The fiber reinforced resin composites have enormous development potentials in the field of deep-sea submersible equipment, and become key strategic materials owing to their light-mass and excellent mechanical properties. It should be noted that the pressure shell is an important part to ensure the safety and stability of a deep-sea submersible. Also, it is closely related to the quality requirements and general performances of submersible. This paper mainly focuses on the deep-sea fiber reinforced resin cylindrical pressure shells. In detail, the structural design characteristics, mechanics performance testing and numerical simulations were reviewed. Moreover, the existing problems were pointed out, and it is expected that these can provide the selection basis for the design and mechanical analysis of the deep-sea cylindrical pressure shells in the future. 国家自然科学基金(11702115);江苏省自然科学基金(BK20170166);中央高校国防培育基金(JUSRP41905

References

[1]  朱信尧, 宋保维, 王鹏, 等. UUV内、外环肋加强耐压壳体强度与稳定性分析[J]. 系统仿真学报, 2013, 25(2):371-376.ZHU X Y, SONG B W, WANG P, et al. Strength and stability analysis of UUV's cylindrical shell stiffened by inside and outside rings[J]. Journal of System Simulation, 2013, 25(2):371-376(in Chinese).
[2]  LOPATIN A V, MOROZOV E V. Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure[J]. Composite Structures, 2015, 122:209-216.
[3]  ARJOMANDI K, TAHERI F. Elastic buckling capacity of bonded and unbonded sandwich pipes under external hydrostatic pressure[J]. Journal of Mechanics of Materials and Structures, 2010, 5(3):391-408.
[4]  KISHORE S, NAIK P P, DENARDO N, et al. Underwater dynamic collapse of sandwich composite structures[J]. Experimental Mechanics, 2019, 59(5):583-598.
[5]  LI B, PANG Y J, CHENG Y X, et al. Collaborative optimization for ring-stiffened composite pressure hull of underwater vehicle based on lamination parameters[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 9(4):373-381.
[6]  YANO Y, TAKAGAWA S. Exploratory study on engineering ceramics pressure hulls for deep-sea submergence services[J]. Marine Technology Society Journal, 2005, 39(3):49-55.
[7]  陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):3013-3016.CHEN Y, GE E D, FU Y C, et al. Review wand prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2015, 32(2):3013-3016(in Chinese).
[8]  管清宇, 严文军, 吴光辉, 等. 碳纤维/环氧树脂复合材料层压板冲击凹坑的回弹特性[J]. 复合材料学报, 2019, DOI:10.13801/j.cnki.fhclxb.20190510.001GUAN Q Y, YAN W J, WU G H, et al. Impact dent relaxation characteristic of carbon fiber/epoxy resin composite laminate[J]. Acta Materiae Compositae Sinica, 2019, DOI:10.13801/j.cnki.fhclxb.20190510.001(in Chinese).
[9]  MOON C J, KIM I H, CHOI B H, et al. Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications[J]. Composite Structures, 2010, 92(9):2241-2251.
[10]  HUGAAS E, VEDVIK N P, ECHTERMEYER A T. Buckling due to external pressure of a composite tube measured by Rayleigh optical backscatter reflectometry and analyzed by finite elements[J]. Structural Control and Health Monitoring, 2018, 25(8):e2205.
[11]  MOEINIFARD M, LIAGHAT G, RAHIMI G, et al. Experimental investigation on the energy absorption and contact force of unstiffened and grid-stiffened composite cylindrical shells under lateral compression[J]. Composite Structures, 2016, 152:626-636.
[12]  朱子旭, 李永清, 朱锡, 等. 夹芯复合材料耐压壳舱段仿真计算及临界环肋高度确定方法研究[J]. 哈尔滨工业大学学报, 2019, 51(5):155-162.ZHU Z X, LI Y Q, ZHU X, et al. A simulation study on the section rib-ring in sandwich composite pressure shell and a calculation method for the critical height[J]. Journal of Harbin Institute of Technology, 2019, 51(5):155-162(in Chinese).
[13]  谭智铎. 7000米级深海滑翔机复合材料耐压舱结构设计研究[D]. 沈阳:东北大学, 2015.TAN Z D. Research on structure design of composite pressure hulls for 7000 depth glider[D]. Shenyang:Northeastern University, 2015(in Chinese).
[14]  CHO Y S, OH D H, PAIK J K. An empirical formula for predicting the collapse strength of composite cylindrical-shell structures under external pressure loads[J]. Ocean Engineering, 2019, 172:191-198.
[15]  LEE G C, KWEON J H, CHOI J H. Optimization of composite sandwich cylinders for underwater vehicle application[J]. Composite Structures, 2013, 96:691-697.
[16]  HASHEMIAN R, MOHAREB M. Finite difference model for the buckling analysis of sandwich pipes under external pressure[J]. Ocean Engineering, 2016, 122:172-185.
[17]  PARNAS L, ARMANIOS E A, SRIRAM P. Postbuckling analysis of composite stiffeners under uniaxial compression[C]//Mechanics Computing in 1990's and Beyond. Ohio:ASCE, 1991.
[18]  LABANS E, BISAGNI C. Buckling and free vibration study of variable and constant-stiffness cylindrical shells[J]. Composite Structures, 2019, 210:446-457.
[19]  常新龙, 刘万雷, 张晓军, 等. 缠绕复合材料壳体爆破压强的预测[J]. 航空动力学报, 2017, 32(12):2817-2823.CHANG X L, LIU W L, ZHANG X J, et al. Burst pressure prediction of filament wound composite shell[J]. Journal of Aerospace Power, 2017, 32(12):2817-2823(in Chinese).
[20]  李彬, 庞永杰, 程妍雪, 等. 基于EBF神经网络的复合材料耐压壳性能研究[J]. 哈尔滨工程大学学报, 2016, 37(10):1323-1329.LI B, PANG Y J, CHENG Y X, et al. Research on a composite pressure hull based on an EBF neural network[J]. Journal of Naval University of Engineering, 2016, 37(10):1323-1329(in Chinese).
[21]  HERNáNDEZ-MORENO H, DOUCHIN B, COLLOMBET F, et al. Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure[J]. Composites Science and Technology, 2008, 68(3-4):1015-1024.
[22]  WEI R F, PAN G, JIANG J. Influence of ply angle and length on buckling behavior of composite shells under hydrostatic pressure[J]. Journal of Reinforced Plastics and Composites, 2019, 38(10):478-491.
[23]  ELLUL B, CAMILLERI D. The applicability and implementation of the discrete Big Bang-Big Crunch optimisation technique for discontinuous objective function in multi-material laminated composite pressure vessels[J]. International Journal of Pressure Vessels and Piping, 2018, 168:39-48.
[24]  孙士平, 张冰, 邓同强, 等. 复合载荷作用变刚度复合材料回转壳屈曲优化[J]. 复合材料学报, 2019, 36(4):1052-1061.SUN S P, ZHANG B, DENG T Q, et al. Buckling optimization of variable stiffness composite rotary shell under combined loads[J]. Acta Materiae Compositae Sinica, 2019, 36(4):1052-1061(in Chinese).
[25]  PAUL P A, RAJAMOHAN V, MATHEW A T. Recent developments in investigation on buckling and post buckling responses of laminated composite shells[J]. Polymer Com-posites, 2018, 39(12):4231-4242.
[26]  ARJOMANDI K, TAHERI F. Stability and post-buckling response of sandwich pipes under hydrostatic external pressure[J]. International Journal of Pressure Vessels and Piping, 2011, 88(4):138-148.
[27]  朱子旭, 李永清, 朱锡, 等. 夹芯复合材料耐压壳工艺缺陷对承载能力的影响[J]. 哈尔滨工程大学学报, 2019, 40(2):38-43.ZHU Z X, LI Y Q, ZHU X, et al. A capacity study on the effect of process defects in composite sandwich pneumatic shell[J]. Journal of Naval University of Engineering, 2019, 40(2):38-43(in Chinese).
[28]  KIDANE S, LI G, HELMS J, et al. Buckling load analysis of grid stiffened composite cylinders[J]. Composites Part B:Engineering, 2003, 34(1):1-9.
[29]  LI Y W, ELISHAKOFF I, JR-STARNES J H. Axial buckling of composite cylindrical shells with periodic thickness variation[J]. Computers & Structures, 1995, 56(1):65-74.
[30]  LABANS E, ABRAMOVICH H, BISAGNI C. An experimental vibration-buckling investigation on classical and variable angle tow composite shells under axial compression[J]. Journal of Sound and Vibration, 2019, 449:315-329.
[31]  TAKLA M. Non-symmetric bifurcation and collapse of elastic-plastic thick-walled cylinders under combined radial and axial loading[J]. Marine Structures, 2019, 64:246-262.
[32]  WAGNER H N R, SOSA E M, LUDWIG T, et al. Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure[J]. International Journal of Mechanical Sciences, 2019, 156:205-220.
[33]  ZHU Y, LUO X Y, OGDEN R W. Asymmetric bifurcations of thick-walled circular cylindrical elastic tubes under axial loading and external pressure[J]. International Journal of Solids and Structures, 2008, 45(11-12):3410-3429.
[34]  杨颜志, 郑权, 李昊, 等. 复合材料格栅圆柱筒稳定性数值仿真与试验[J]. 复合材料学报, 2015, 31(1):295-300.YANG Y Z, ZHENG Q, LI H, et al. Numerical simulation and test on stability of composite grid stiffened cylinder[J]. Acta Materiae Compositae Sinica, 2015, 31(1):295-300(in Chinese).
[35]  KHAZAEINEJAD P, NAJAFIZADEH M M, JENABI J, et al. On the buckling of functionally graded cylindrical shells under combined external pressure and axial compression[C]//ASME 2009 Pressure Vessels and Piping Conference. Pragu:ASME, 2009:755-762.
[36]  PINTO M, GUPTA S, SHUKLA A. Differences in the hydrostatic implosion of metallic and composite tubes studied using digital image correlation[C]//SONG B, LAMBERSON L, CASEM D, et al. Proceedings of the 2015 Annual Conference on Experimental and Applied Mechanics:Dynamic Behavior of Materials, Volume 1. Springer, 2016:171-176.
[37]  尚闻博. 深海耐压舱设计的ANSYS仿真研究[D]. 青岛:中国海洋大学, 2015.SHANG W B. ANSYS simulation research of deep ocean pressure tank design[D]. Qingdao:Ocean University of China, 2015(in Chinese).
[38]  PINTO M, GUPTA S, SHUKLA A. Study of implosion of carbon/epoxy composite hollow cylinders using 3D digital image correlation[J]. Composite Structures, 2015, 119:272-286.
[39]  JAVIER C, MATOS H, SHUKLA A. Hydrostatic and blast initiated implosion of environmentally degraded carbon-epoxy composite cylinders[J]. Composite Structures, 2018, 202:897-908.
[40]  刘敬喜, 王敏. 深海环境模拟实验装置压力控制系统设计[J]. 电子设计工程, 2012, 20(4):87-90.LIU J X, WANG M. Design of pressure control system for deep-sea environment simulator[J]. Electronic Design Engineering, 2012, 20(4):87-90(in Chinese).
[41]  Department of the Navy. The navy unmanned undersea vehicle (UUV) master plan[R]. U. S.:Department of the Navy, 2004.
[42]  张强, 张雷励, 张铭钧. 深海环境模拟实验装置及压力动态控制技术[J]. 哈尔滨工程大学学报, 2016, 37(11):1565-1572.ZHANG Q, ZHANG L L, ZHANG M J. Experiment devices for simulating a deep-sea environment[J]. Journal of Harbin Engineering University, 2016, 37(11):1565-1572(in Chinese).
[43]  ARHANT M, BRIANCON C, BURTIN C, et al. Carbon/polyamide 6 thermoplastic composite cylinders for deep sea applications[J]. Composite Structures, 2019, 212:535-546.
[44]  LOPATIN A V, MOROZOV E V. Buckling of a composite cantilever circular cylindrical shell subjected to uniform external lateral pressure[J]. Composite Structures, 2012, 94(2):553-562.
[45]  陈志刚, 吴永康, 程小全, 等. 1/3含口盖复合材料柱壳后屈曲性能[J]. 北京航空航天大学学报, 2017, 43(3):544-550.CHEN Z G, WU Y K, CHENG X Q, et al. Post-buckling performance of 1/3 composite cylindrical shell with cover[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3):544-550(in Chinese).
[46]  陈悦, 朱子旭, 李永清, 等. 夹层复合材料耐压圆柱壳深水静压承载特性分析[J]. 海军工程大学学报, 2018, 30(2):87-91.CHEN Y, ZHU Z X, LI Y Q, et al. On ultimate bearing capability of sandwich composites cylinders for underwater vehicle under hydrostatic external pressure[J]. Journal of Naval University of Engineering, 2018, 30(2):87-91(in Chinese).
[47]  程妍雪. 复合材料潜器耐压壳设计优化方法研究[D]. 哈尔滨:哈尔滨工程大学, 2015.CHENG Y X. Research on optimization and design methodology of composite material submersible pressure hull[D]. Harbin:Harbin Engineering University, 2015(in Chinese).
[48]  WU H, LAI C, SUN F, et al. Carbon fiber reinforced hierarchical orthogrid stiffened cylinder:Fabrication and testing[J]. Acta Astronautica, 2018, 145:268-274.
[49]  梁斌, 陈金晓, 李戎, 等. 水下环肋功能梯度材料圆柱壳稳定性研究[J]. 振动与冲击, 2017, 36(13):80-85, 121.LIANG B, CHEN J X, LI R, et al. Stability of a submerged ring-stiffened FGM cylindrical shell[J]. Journal of Vibration and Shock, 2017, 36(13):80-85, 121(in Chinese).
[50]  ALMEIDA J H S, RIBEIRO M L, TITA V, et al. Damage and failure in carbon/epoxy filament wound composite tubes under external pressure:Experimental and numerical approaches[J]. Materials & Design, 2016, 96:431-438.
[51]  TAHERI-BEHROOZ F, OMIDI M, SHOKRIEH M M. Experimental and numerical investigation of buckling behavior of composite cylinders with cutout[J]. Thin-Walled Structures, 2017, 116:136-144.
[52]  NARAYAN D A, GANAPATHI M, PRADYUMNA B, et al. Investigation of thermo-elastic buckling of variable stiffness laminated composite shells using finite element approach based on higher-order theory[J]. Composite Structures, 2019, 211:24-40.
[53]  刘涛. 大深度潜水器结构分析与设计研究[D]. 无锡:中国船舶科学研究中心, 2001.LIU T. Analysis and design of deep-sea submersible structure[D]. Wuxi:China Ship Scientific Research Center, 2001(in Chinese).
[54]  刘进. 计及海洋参数水下滑翔机耐压壳体优化[D]. 天津:天津大学, 2014.LIU J. The optimization design of underwater glider pressure hull based on ocean parameters[D]. Tianjin:Tianjin University, 2014(in Chinese).
[55]  杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10.DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese).
[56]  李博, 熊超, 殷军辉, 等. 多角度交替缠绕复合圆筒的剩余应力算法及水压试验[J]. 复合材料学报, 2018, 35(6):1452-1463.LI B, XIONG C, YIN J H, et al. Residual stress algorithm for composite cylinder with alternate multi-angle winding layers and water-pressure test[J]. Acta Materiae Compositae Sinica, 2018, 35(6):1452-1463(in Chinese).
[57]  SHAHSAVARI A H, SOROUSH S, MOJTABA S. Parametric study of specific buckling load of cylindrical grid stiffened composite shells[J]. Advanced Science Letters, 2012, 13(1):482-485.
[58]  于礼玮, 曹维宇. 碳纤维复合材料在海洋中的应用[J]. 化工新型材料, 2016, 44(8):4-5, 8.YU L W, CAO W Y. Application of carbon fiber composites in marine area[J]. New Chemical Materials, 2016, 44(8):4-5, 8(in Chinese).
[59]  DAVIES P, CHOQUEUSE D, BIGOURDAN B, et al. Composite cylinders for deep sea applications:An overview[J]. Journal of Pressure Vessel Technology, 2016, 138(6):060904.
[60]  CAI B P, LIU Y H, LIU Z K, et al. Reliability-based load and resistance factor design of composite pressure vessel under external hydrostatic pressure[J]. Composite Structures, 2011, 93(11):2844-2852.
[61]  邢静忠, 陈利. 内外压作用下纤维缠绕厚壁柱形容器的强度[J]. 复合材料学报, 2011, 28(1):124-131.XING J Z, CHEN L. Strength of filament wound thick-walled cylindrical vessel under internal and external pressure[J]. Acta Materiae Compositae Sinica, 2011, 28(1):124-131(in Chinese).
[62]  MIAN H H, WANG G, DAR U A, et al. Optimization of composite material system and lay-up to achieve minimum weight pressure vessel[J]. Applied Composite Materials, 2013, 20(5):873-889.
[63]  XU L R, KRISHNAN A, NING H, et al. A seawater tank approach to evaluate the dynamic failure and durability of E-glass/vinyl ester marine composites[J]. Composites Part B:Engineering, 2012, 43(5):2480-2486.
[64]  沈克纯, 潘光, 施瑶. 静水压力下纤维缠绕复合材料壳体耐压因子的优化设计[J]. 船舶力学, 2017, 21(12):1551-1563.SHEN K C, PAN G, SHI Y. Optimization of composites shell subjected to hydrostatic pressure to maximize design pressure factor[J]. Journal of Ship Mechanics, 2017, 21(12):1551-1563(in Chinese).
[65]  LIU G, GAO H, WEI G, et al. A novel structure design of braided composite pressure vessel and its mechanical analysis[J]. The Journal of The Textile Institute, 2019, 110(1):124-133.
[66]  BURAGOHAIN M, VELMURUGAN R. Study of filament wound grid-stiffened composite cylindrical structures[J]. Composite Structures, 2011, 93(2):1031-1038.
[67]  WANG B, MA X, HAO P, et al. Improved knockdown factors for composite cylindrical shells with delamination and geometric imperfections[J]. Composites Part B:Engineering, 2018, 163:314-323.
[68]  李天. 深海压力环境模拟试验装置及其恒压控制系统研究[D]. 哈尔滨:哈尔滨工程大学, 2013.LI T. Research on the deep-sea pressure environmental simulation test device and its constant pressure control system[D]. Harbin:Harbin Engineering University, 2013(in Chinese).
[69]  SHEN H S. Postbuckling of axially-loaded laminated cylindrical shells surrounded by an elastic medium[J]. Mechanics of Advanced Materials and Structures, 2012, 20(2):130-150.
[70]  WHITE S C, WEAVER P M, WU K C. Post-buckling analyses of variable-stiffness composite cylinders in axial compression[J]. Composite Structures, 2015, 123:190-203.
[71]  ZHANG F, WAN Y, GU B, et al. Impact compressive behavior and failure modes of four-step three-dimensional braided composites-based meso-structure model[J]. International Journal of Damage Mechanics, 2015, 24(6):805-827.
[72]  SESHADRI M, RAMJI M. Prediction of mechanical behaviour of adhesively bonded CFRP scarf jointed specimen under tensile loading using localised DIC and CZM[J]. International Journal of Adhesion and Adhesives, 2019, 89(3):88-108.
[73]  李树健, 湛利华, 周源琦, 等. 基于图像处理的碳纤维增强树脂基复合材料固化压力-缺陷-力学性能建模与评估[J]. 复合材料学报, 2018, 35(12):3368-3376.LI S J, ZHAN L H, ZHOU Y Q, et al. Modeling and evaluation of curing pressure-defects-mechanical properties of carbon fiber composites based on image processing[J]. Acta Materiae compositae Sinica, 2018, 35(12):3368-3376(in Chinese).
[74]  王卿平, 费本华, 蒋明亮, 等. 基于X射线计算机断层扫描技术的重组竹湿热耦老化评估[J]. 复合材料学报, 2018, 35(4):989-998. WANG Q P, FEI B H, JIANG M L, et al. Hydrothermal aging evaluation method of recombinant bamboo based on X-ray computed tomography technology[J]. Acta Materiae Compositae Sinica, 2018, 35(4):989-998(in Chinese).
[75]  黄雄, 谭焕成, 刘璐璐, 等. 编织角和承载方向对三维四向编织复合材料动态压缩性能的影响[J]. 复合材料学报, 2018, 35(4):823-833. HUANG X, TAN H C, LIU L L, et al. Influence of braid angle and bearing direction on dynamic compressive properties of 3D four directional braided composites[J]. Acta Materiae Compositae Sinica, 2018, 35(4):823-833(in Chinese).
[76]  SHI S, SUN Z, REN M, et al. Buckling response of advanced grid stiffened carbon-fiber composite cylindrical shells with reinforced cutouts[J]. Composites Part B:Engineering, 2013, 44(1):26-33.
[77]  李志敏. 船舶与海洋工程中复合材料圆柱壳结构屈曲和后屈曲行为研究[D]. 上海:上海交通大学, 2008.LI Z M. Buckling and postbuckling behavior of composite cylindrical shell structures in naval architecture and ocean engineering[D]. Shanghai:Shanghai Jiao Tong University, 2008(in Chinese).
[78]  SRIDHARAN S, KASAGI A. On the buckling and collapse of moderately thick composite cylinders under hydrostatic pressure[J]. Composites Part B:Engineering, 1997, 28(5-6):583-596.
[79]  SAJJADY S A, RAHNAMA S, LOTFI M, et al. Numerical analysis of delamination buckling in composite cylindrical shell under uniform external pressure:Cohesive element method[J]. Journal of Modern Processes in Manufacturing and Production, 2017, 6(3):87-106.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133