全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

复合材料自动铺丝工艺参数对应力波传播特征的作用机制
Mechanism of effect of processing parameters on stress wave propagation characteristics during automated fiber placement

DOI: 10.13801/j.cnki.fhclxb.20180713.001

Keywords: 复合材料,自动铺丝,应力波传播,工艺参数,微观分析
composites
,automated fiber placement,stress wave propagation,processing,microscopic analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用应力波特征能够有效识别材料结构中内部缺陷及其分布形式,为了将工艺载荷作为应力波激励源对预成型体内部缺陷进行识别,应首先研究铺丝过程中工艺参数对应力波传播特征的影响,以确定应力传感器的放置位置。本文采用有限元方法构建了铺丝过程热力耦合模型,分析了应力波特征参数与工艺参数之间的关系,并进行了实验验证。为了从微观能量角度解释工艺参数对应力波特征的影响规律,采用分子动力学方法,建立了预浸丝界面的分子模型,并计算出总能量、纤维表面能、基体内能等能量参数,识别和评价了不同工艺参数作用下的应力波驱动能量及其贡献比,以揭示工艺参数对应力波特征的能量作用机制。结果表明,以基体内能作为驱动能量的侧向应力波与工艺参数的关系明显,在不同工艺参数施载下,内部缺陷的形成对该波形的作用易于识别,该结论可作为应力传感器放置位置的参考依据。 The internal defects in the material structure and their distributions could effectively be identified by using stress wave characteristics. In order to identify the internal defects of the preform by using processing loads that act as a stress wave excitation source, the effect of the processing parameters on the stress wave propagation characteristics in the laying process should be first studied to determine the position of the stress sensor. In this paper, the thermo-mechanical coupling model of the laying process was constructed by using the finite element method (FEM). The relationship between the stress wave characteristic parameters and the processing parameters was analyzed, and the experimental verification was then carried out. In order to explain the effect of the processing parameters on the stress wave characteristics from the perspective of microscopic energy, molecular dynamics (MD) method was used to establish the molecular model of the prepreg interface, and the energy parameters such as total energy, surface energy of fibers, and internal energy of matrix were calculated. Furthermore, the driving energy of stress wave and its contribution ratio under different processing parameters were identified and evaluated to reveal the energy effect mechanism of the processing parameters on the stress wave characteristics. The results show that the lateral waves driven by the internal energy of matrix have a significant relationship with the processing parameters. The effect of the formation of internal defects on the waveform is easy to identify under the different processing parameters. This conclusion could be used as a reference for stress sensor placement. 国家自然科学基金(51705266);国家科技重大专项(2014ZX047001091);黑龙江省自然科学基金(QC2018072

References

[24] HAN Z Y, SUN S Z, FU H Y, et al. Multi-scale low-entropy method for optimizing the processing parameters during automated fiber placement[J]. Materials, 2017, 10(9):1024.
-->
[1]  李星, 关志东, 刘璐, 等. 复合材料跨尺度失效准则及其损伤演化[J]. 复合材料学报, 2013, 30(2):152-158. LI X, GUAN Z D, LIU L, et al. Composite multiscale failure criteria and damage evolution[J]. Acta Materiae Compositae Sinica, 2013, 30(2):152-158(in Chinese).
[2]  SARTORATO M, DE MEDEIROS R, TITA V. A finite element formulation for smart piezoelectric composite shells:Mathematical formulation, computational analysis and experimental evaluation[J]. Composite Structures, 2015, 127:185-198.
[3]  LUKASZEWICZ D, WARD C, POTTER K D. The engineering aspects of automated prepreg layup:History, present and future[J]. Composites Part B:Engineering, 2012, 43(3):997-1009.
[4]  GRANT C G. Fiber placement process utilization within the world wide aerospace industry[J]. SAMPE Journal, 2000, 36(4):45-50.
[5]  韩振宇, 王振宇, 边东岩, 等. 自动铺丝构件缺陷形成机理的研究进展[J]. 纤维复合材料, 2014(4):3-7. HAN Z Y, WANG Z Y, BIAN D Y, et al. A review on advances in defect formation mechanism of automated fiber placement components[J]. Fiber Composites, 2014(4):3-7(in Chinese).
[6]  HAN Z Y, SUN S Z, LI W Q, et al. Experimental study of the effect of internal defects on stress waves during automated fiber placement[J]. Polymers, 2018, 10(4):0413.
[7]  PARLEVLIET P P, BERSEE H E N, BEUKERS A. Residual stresses in thermoplastic composites:A study of the literature. Part Ⅲ:Effects of thermal residual stresses[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(6):1581-1596.
[8]  JIAO Y Y, ZHANG X L, ZHAO J, et al. Viscous boundary of DDA for modeling stress wave propagation in jointed rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7):1070-1076.
[9]  LAMBERT G, GUREVICH B, BRAJANOVSKI M. Attenuation and dispersion of P-waves in porous rocks with planar fractures:Comparison of theory and numerical simulations[J]. Geophysics, 2006, 71(3):N41-N45.
[10]  DEL-MENEZZI C H S, AMORIM M R S, COSTA M A, et al. Evaluation of thermally modified wood by means of stress wave and ultrasound nondestructive methods[J]. Materials Science, 2014, 20(1):61-66.
[11]  OBERHOFNEROVA E, ARNETOVKA K, HOLECEK T, et al. Determination of correlation between destructive and nondestructive test methods applied on modified wood exposed to natural weathering[J]. Bioresources, 2016, 11(2):5155-5168.
[12]  ROSS R J, DEGROOT R C, NELSON W J, et al. The relationship between stress wave transmission characteristics and the compressive strength of biologically degraded wood[J]. Forest Products Journal 1997, 47(5):89-93.
[13]  WANG C H, CHANG F K. Scattering of plate waves by a cylindrical inhomogeneity[J]. Journal of Sound and Vibration, 2005, 282(1-2):429-451.
[14]  TASDEMIRCI A, HALL I W. Numerical and experimental studies of damage generation in multi-layer composite materials at high strain rates[J]. International Journal of Impact Engineering, 2007, 34(2):189-204.
[15]  贾雷. 环氧分子在碳纤维表面相互作用的分子模拟研究[D]. 哈尔滨:哈尔滨工业大学, 2008. JIA L. Study of interaction between epoxy molecules and carbon fiber surface with molecular simulation[D]. Harbin:Harbin Institute of Technology, 2008(in Chinese).
[16]  ALTENBACH H. Mechanics of advanced materials for lightweight structures[J]. Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science, 2011, 225(11):2481-2496.
[17]  ARNTSEN B, CARCIONE J M. Numerical simulation of the Biot slow wave in water-saturated Nivelsteiner Sandstone[J]. Geophysics, 2001, 66(3):890-896.
[18]  CAIRNS D S, NELSON J W, WOO K, et al. Progressive damage analysis and testing of composite laminates with fiber waves[J]. Composites Part A:Applied Science and Manufacturing, 2016, 90:51-61.
[19]  TASDEMIRCI A, HALL I W. The effects of plastic deformation on stress wave propagation in multi-layer materials[J]. International Journal of Impact Engineering, 2007, 34(11):1797-1813.
[20]  TASDEMIRCI A, HALL I W. Development of novel multilayer materials for impact applications:A combined numerical and experimental approach[J]. Materials & Design, 2009, 30(5):1533-1541.
[21]  TASDEMIRCI A, KARA A. The effect of perforations on the stress wave propagation characteristics of multilayered materials[J]. Journal of Thermoplastic Composite Materials, 2016, 29(12):1680-1695.
[22]  GAMA B A, BOGETTI T A, FINK B K, et al. Aluminum foam integral armor:A new dimension in armor design[J]. Composite Structures, 2001, 52(3-4):381-395.
[23]  SCHMIDT C, SCHULTZ C, WEBER P, et al. Evaluation of eddy current testing for quality assurance and process monitoring of automated fiber placement[J]. Composites Part B:Engineering, 2014, 56:109-116.
[24]  黄志军. 自动铺放成型温度与预浸带变形研究[D]. 南京:南京航空航天大学, 2012. HUANG Z J. Research on prepreg temperature and its deformation for automated tape laying[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[25]  -->[24] HAN Z Y, SUN S Z, FU H Y, et al. Multi-scale low-entropy method for optimizing the processing parameters during automated fiber placement[J]. Materials, 2017, 10(9):1024.
[26]  张鑫, 王小群. 环氧树脂力学性能及碳纤维/环氧界面分子模拟[C]//第十二届全国青年材料科学技术研讨会. 南京:中国材料研究学会, 2009:865-871. ZHANG X, WANG X Q. Molecular simulation of mechanical properties of epoxy resin and interaction energy of carbon fiber/epoxy composites[C]//The 12th Symposium of Materials Science and Technology of Chinese Young Scientists. Nanjing:Chinese Materials Research Society, 2009:865-871(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133