|
- 2019
空间超高频遥感反射器热变形优化及零膨胀材料的制备
|
Abstract:
空间超高频遥感反射器(工作频段600 GHz以上)在轨运行过程中,由于空间温度变化不均匀会产生热变形问题。为了保证反射面的电气性能,空间超高频遥感反射器要求反射面的型面精度均方差值r ≤ 10 μm。本文创新性地提出了一种单曲面板栅格结构反射器,利用有限元仿真分析软件对反射器进行热变形分析。研究了反射器的不同结构参数对反射面热变形的影响,并以低热变形为原则对反射器结构参数进行优化。优化后的结果仍然不能满足空间超高频遥感反射器的型面精度要求,因此设计并制备了一种热膨胀系数α ≤ 0.5×10-7℃-1的零膨胀材料。这种零膨胀材料是将碳纤维增强聚合物基复合材料(CFRP)与芳纶(Kevlar)纤维织物按照一定比例交错循环铺层,利用该比例调整反射器层压板铺层,可以使反射面热变形降低至7.94 μm,满足空间超高频遥感反射器的型面精度要求。 Space ultrahigh frequency remote sensing reflectors (above 600 GHz in operating frequency range) will cause thermal deformation problems due to non-uniform spatial temperature changes during orbital operation. In order to ensure the electrical performance of the reflecting surface, the space ultrahigh frequency remote sensing reflector requires the surface accuracy of the reflecting surface to have a root mean square of r ≤ 10 μm. Therefore, a novel single-panel grid structure reflector was innovatively proposed, and the thermal deformation analysis of the reflector was performed using finite element analysis software. The influence of different structural parameters of the reflector on the thermal deformation of the reflector was studied, and the structural parameters of the reflector were optimized based on the principle of low thermal deformation. The optimized results still couldn't meet the surface accuracy requirements of space ultrahigh frequency remote sensing reflectors. Therefore, a zero-expansion composite with coefficient of thermal expansion α ≤ 0.5×10-7℃-1 was designed and manufactured. The zero-expansion composite is combined with carbon fiber reinforced polymer composites (CFRP) and Kevlar fiber fabric interlaced and layered in a certain ratio. By adjusting the ratio of reflecting surface laminates, the thermal deformation of the reflecting surface can be reduced to 7.94 μm to meet the surface accuracy requirements of ultrahigh frequency remote sensing reflector. 中国航天科技集团公司航天科技创新基金(JSKFJ201604120011
[1] | COTTINGHAM C. Lessons learned during thermal hardware integration on the global precipitation measurement satellite[C]//42nd International Conference on Environmental Systems (AIAA), 2012:3424. |
[2] | WEBSTER G, FALK G, TOROALMODOVAR C. Contamination control of the global precipitation measurement mission propellant tank[C]//Aiaa/asme/sae/asee Joint Propulsion Conference & Exhibit. 2012:1389-1395. |
[3] | 韦娟芳, 冀有志, 龚博安. 星载蜂窝夹层结构天线复合材料力学性能检测[J]. 宇航材料工艺, 2007, 37(5):8-12. WEI Juanfang, JI Youzhi, GONG Bo'an. Mechanical test for satellite antenna with composite honeycomb sandwich structure[J]. Aerospace Materials & Tech-nology, 2007, 37(5):8-12(in Chinese). |
[4] | 夏文干, 杨洁. 先进复合材料天线反射器精度的国内外情况[J]. 高科技纤维与应用, 2000(6):35-38. XIA Wengan, YANG Jie. The situation at home and abroad of the advanced composite material antenna reflector accuracy[J]. Hi-Tech Fiber & Application, 2000(6):35-38(in Chinese). |
[5] | 梁森, 陈花玲, 陈天宁, 等. 蜂窝夹芯结构面内等效弹性参数的分析研究[J]. 航空材料学报, 2004, 24(3):26-31. LIANG Sen, CHEN Hualing, CHEN Tianning, et al. Analytical study of the equivalent elastic parameters for a honeycomb core[J]. Journal of A Aeronautical Materials, 2004, 24(3):26-31(in Chinese). |
[6] | 夏瑜, 曾春梅, 郭培基. 主动成形准各向同性CFRP复合材料反射镜的铺层设计[J]. 红外与激光工程, 2012, 41(7):1885-1892. XIA Yu, ZENG Chunmei, GUO Peiji. Lay-up design of quasi-isotropic CFRP mirror for active forming[J]. Infrared & Laser Engineering, 2012, 41(7):1885-1892(in Chinese). |
[7] | 李军. 复合材料近零膨胀研究[J]. 纤维复合材料, 2015, 32(1):41-44. LI Jun. Study on near-zero thermal expansion of composite material[J]. Fiber Composites, 2015, 32(1):41-44(in Chinese). |
[8] | 胡玉琴. 铝蜂窝夹层板等效模型研究及数值分析[D]. 南京:南京航空航天大学, 2008. HU Yuqin. Equivalent models research and numerical analysis of aluminum honeycomb sandwich plates[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese). |
[9] | 王萍萍, 罗文波, 邹经湘, 等. 碳纤维蜂窝夹层结构动特性分析[J]. 复合材料学报, 2002, 19(6):134-136. WNAG Pingping, LUO Wenbo, ZOU Jingxiang, et al. Dynamic analysis of the carbon fiber honeycomb sandwich structure[J]. Acta Materiae Compositae Sinica, 2002, 19(6):134-136(in Chinese). |
[10] | LANG M, BAIER H, ERNST T. High precision thin shell reflectors-design concepts, structural optimisation and shape adjustment techniques[J]. Proceeding of Spacecraft Structures, Materials and Mechanical Testing, 2005, 581:11. |
[11] | 周涛, 叶周军, 史耀辉, 等. 星载蜂窝夹层结构固面天线反射器的热变形[J]. 复合材料学报, 2018, 35(8):2065-2073. ZHOU Tao, YE Zhoujun, SHI Yaohui, et al. Analysis of thermal distortion for honeycomb sandwich con-struction rigid reflector of satellite antenna[J]. Acta Materiae Compositae Sinica, 2018, 35(8):2065-2073(in Chinese). |
[12] | 姚科, 杨军, 韦娟芳. 星载固面反射天线热变形分析[J]. 低温建筑技术, 2016, 38(02):67-69. YAO Ke, YANG Jun, WEI Juanfang. Analysis of thermal distortion for rigid reflector of satellite antenna[J]. Low Temperature Architecture Technology, 2016, 38(02):67-69(in Chinese). |
[13] | FIEBIG M D, BACHA C A. Design and Testing of the Global Precipitation Measurement Mission Core Propulsion System[C]//Aiaa/asme/sae/asee Joint Propulsion Conference, 2013:3758. |
[14] | FANG Houfei, HUANG Puming, ZHOU Yang, et al. Analytical Investigation of a High Precision Reflector[C]//Spacecraft Structures Conference, 2013:1192-1193. |