全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

不同石墨烯纳米片添加量对石墨烯纳米片-40% Zn/环氧涂层防腐性能的影响
Effects of varying graphene nanoplates addition on anticorrosive properties of graphene nanoplates-40%Zn/epoxy coating

DOI: 10.13801/j.cnki.fhclxb.20180919.002

Keywords: 石墨烯纳米片,Zn/环氧(EP)涂层,屏蔽性能,阴极保护效果,防腐模型
graphene nanoplates
,Zn/epoxy coating,shielding performance,cathodic protection,anticorrosive model

Full-Text   Cite this paper   Add to My Lib

Abstract:

将不同质量比的石墨烯纳米片(Gnps)添加到40% Zn粉含量的Zn/环氧(EP)涂层中,制备出Gnps-40% Zn/EP复合涂层,并制备Zn粉含量为70%的Zn/EP涂层作为对比涂层。采用拉曼光谱、SEM、盐雾试验、电化学测试等技术,研究不同Gnps添加量对Gnps-40% Zn/EP涂层屏蔽性能和阴极保护效果的影响。对比Gnps-40% Zn/EP复合涂层与70% Zn/EP涂层的防腐性能,探究了添加Gnps来降低涂层Zn粉含量的可能性。构建不同Gnps添加量的Zn/EP复合涂层的防腐模型,进一步阐明不同涂层防腐机制的差异。结果表明:Gnps在涂层中的分散性良好,其无序度随着Gnps添加量的增加呈线性增大;当Gnps添加量为0.3%、0.5%和1.0%时,可以明显提高Zn/EP涂层的物理屏蔽性能;当Gnps添加量为0.5%和1.0%时,可以显著改善Zn/EP涂层牺牲阳极的阴极保护效果;当Gnps添加量为1.5%时,对涂层屏蔽性能和阴极保护效果的改善均不明显。对于Gnps-40% Zn/EP复合涂层,Gnps最佳添加量为0.5%~1.0%。通过添加适量Gnps,可以降低Zn/EP涂层中的Zn粉含量,从而降低生产成本。 Different mass ratios of graphene nanoplates (Gnps) were added into Zn/epoxy (EP) coatings with 40%Zn content to prepare Gnps-40%Zn/EP composite coatings. The Zn/EP coating with 70%Zn content was also prepared as the contrast. The Raman spectra, SEM, salt spray test and electrochemical technique et al were applied to evaluate the barrier property and cathodic protection effect of Gnps-40%Zn/EP composite coatings. The anticorrosive effects of Gnps-40%Zn/EP composite coatings and 70%Zn/EP coating were compared to explore the possibility of reducing Zn content by adding Gnps into Zn/EP coating. To further clarify anticorrosive mechanism of Zn/EP coating with varying Gnps addition, the anticorrosive model was established. The results indicate that Gnps could be well-dispersed into Zn/EP coatings, but disorder parameter of Gnps increases with the increasing of Gnps addition. While Gnps addition are 0.3%, 0.5% and 1.0%, the physical shielding performance of Zn/EP coating can be significantly improved; while Gnps addition are 0.5% and 1.0%, the cathodic protection effect of Zn/EP coatings can be significantly enhanced; While Gnps addition is 1.5%, both shielding performance and cathodic protection effect of Zn/EP coatings are not obviously improved. For Gnps-40%Zn/EP composite coating, the best addition range of Gnps is 0.5%-1.0%. The suitable addition of Gnps can reduce Zn content in Zn/EP coating and lower the production cost. 国家自然科学基金(51871172

References

[1]  赵书彦, 陈军君, 刘福春, 等. 纳米石墨/聚氨酯复合涂层的制备及耐腐蚀性能[J]. 复合材料学报, 2016, 33(9):1868-1878. ZHAO S Y, CHEN J J, LIU F C, et al. Preparation and anti-corrosion performances of nano-graphite/polyurethane composite coatings[J]. Acta Materiae Compositae Sinica, 2016, 33(9):1868-1878(in Chinese).
[2]  PARK S M, SHON M Y. Effects of multi-walled carbon nano tubes on corrosion protection of zinc rich epoxy resin coating[J]. Journal of Industrial and Engineering Chemistry, 2015, 21:1258-1264.
[3]  王清海, 王秀娟, 方健君. 石墨烯在环氧富锌底漆中的应用[J]. 涂料工业, 2016, 46(12):42-47. WANG Q H, WANG X J, FANG J J. Application of graphene in epoxy zinc rich primer[J]. Paint & Coatings Industry, 2016, 46(12):42-47(in Chinese).
[4]  SCHAEFER K, MISZCZYK A. Improvement of electrochemical action of zinc rich paints by addition of nanoparticulate zinc[J]. Corrosion Science, 2013, 66:380-391.
[5]  LAYEK R K, NANDI A K. A review on synthesis and properties of polymer functionalized graphene[J]. Polymer, 2013, 54(19):5087-5103.
[6]  田振宇, 李志刚, 瞿研. 锌烯重防腐涂料的发展现状与应用前景[J]. 涂料技术与文摘, 2015, 36(9):30-34. TIAN Z Y, LI Z G, QU Y. Application of zinc/graphene composite heavy-duty anticorrosive coatings[J]. Coat Technol Abstr, 2015, 36(9):30-34(in Chinese).
[7]  American Society for Testing and Materials. Standard practice for operating salt spray (fog) apparatus:ASTM B117-03[S]. West Conshohocken:American Society for Testing and Materials, 2003.
[8]  吴娟霞, 徐华, 张锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72(3):301-318. WU J X, XU H, ZHANG J. Raman spectroscopy of graphene[J]. Acta Chimica Sinica, 2014, 7(3):301-318(in Chinese).
[9]  TOUZAIN S. Some comments on the use of the EIS phase angle to evaluate organic coating degradation[J]. Electrochimica Acta, 2010, 55(21):6190-6194.
[10]  YAN M, VICTORIA J G, BRIAN R, et al. SVET method for characterizing anti-corrosion performance of metal-rich coatings[J]. Corrosion Science, 2010, 52:2636-2642.
[11]  SEPIDEH P, ALIMORAD R, MOHAMMAD R, et al. Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide[J]. Surface & Coatings Technology, 2017, 317:1-9.
[12]  XU L, LIU F C, WANG Z Y, et al. The effect of surface modification of zinc particles with phosphoric acid on the corrosion resistance of cold galvanizing coatings[J]. Progress in Organic Coatings, 2018, 114:90-101.
[13]  FARHAD T S, IMAN D, HADI E, et al. Effect of nano clay on corrosion protection of zinc-rich epoxy coatings on steel 37[J]. Journal of Materials Science & Technology, 2016, 32(11):1152-1160.
[14]  NOVOSCLOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[15]  樊玮, 刘天西, 张超. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013, 30(1):14-21. FAN W, LIU T X, ZHANG C. Recent progress in graphene/polymer composites[J]. Acta Materiae Compositae Sinica, 2013, 30(1):14-21(in Chinese).
[16]  TENG S, GAO Y, CAO F L, et al. Zinc-reduced graphene oxide for enhanced corrosion protection of zinc-rich epoxy coatings[J]. Progress in Organic Coatings, 2018, 123:185-189.
[17]  CUBIDES Y, CASTANEDA H. Corrosion protection mechanisms of carbon nanotube and zinc-rich epoxy primers on carbon steel in simulated concrete pore solutions in the presence of chloride ions[J]. Corrosion Scienc, 2016, 109:145-161.
[18]  GERGELY A, PFEIFER é, BERTóTI I, et al. Corrosion protection of cold-rolled steel by zinc-rich epoxy paint coatings loaded with nano-size alumina supported polypyrene[J]. Corrosion Science, 2011, 53(11):3486-3499.
[19]  JALILI M, ROSTAMI M, RAMEZANZADEH B. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle[J]. Applied Surface Science, 2015, 328:95-108.
[20]  MORTEZA G S, MOHAMMADREZA S, BAHRAM R. Fabricating an epoxy composite coating with enhanced corrosion resistance through impregnation of functionalized graphene oxide-co-montmorillonite nanoplatelet[J]. Corrosion Science, 2017, 129:38-53.
[21]  丁锐, 郑艳, 余海斌. 石墨烯环氧富锌70%涂层的电化学研究[J]. 涂料工业, 2017, 47(8):1-8+14. DING R, ZHENG Y, YU H B. Electrochemical study on graphene-modified zinc-rich coatings[J]. Paint & Coatings Industry, 2017, 47(8):1-8+14(in Chinese).
[22]  HADIS H, MANSOUR R. A mechanistic study of the enhanced cathodic protection performance of graphene-reinforced zinc rich nanocomposite coating for corrosion protection of carbon steel substrate[J]. Journal of Alloys and Compounds, 2017, 727:1148-1156.
[23]  LIU D, ZHAO W J, LIU S, et al. Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene[J]. Surface & Coatings Technology, 2016, 286:354-364.
[24]  ARMAN S Y, RAMEZANZADEH B, FARGHADANI S, et al. Application of the electrochemical noise to investigate the corrosion resistance of an epoxy zinc-rich coating loaded with lamellar aluminum and micaceous iron oxide particles[J]. Corrosion Science, 2013, 77:118-127.
[25]  HSIEH C T, CHEN W Y. Water/oil repellency and work of adhesion of liquid droplets on graphene oxide and graphene surfaces[J]. Surface & Coatings Technology, 2011, 205(19):4554-4558.
[26]  NOVOSELOV K S, FALKO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490:192-200.
[27]  RAMEZANZADEH B, MOHAMMADZADEH M, SHOHANI N, et al. Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating[J]. Chemical Engineering Journal, 2017, 320:363-375.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133