|
- 2019
Ti3C2Tx/聚酰亚胺复合材料的制备及性能
|
Abstract:
为了改善聚酰亚胺(PI)的热学性能和冲击断裂强度、弯曲强度和硬度等力学性能,通过液相刻蚀三元层状陶瓷Ti3AlC2制备了二维层状结构纳米Ti3C2Tx,利用XRD、FE-SEM对产物进行了物相分析和微观结构表征;采用湿法球磨和热压成型法制备了不同Ti3C2Tx含量的Ti3C2Tx/PI复合材料,考察了Ti3C2Tx对复合材料热学性能、冲击断裂强度、弯曲强度和硬度等的影响,并分析了断面形貌。结果表明,所制备的Ti3C2Tx为纳米片层结构,片层厚度为20~50 nm,片层堆叠;二维Ti3C2Tx在PI基体中分散均匀,且固化过程中PI进入Ti3C2Tx层间提高了二者之间的结合力,使界面结合良好;Ti3C2Tx纳米片的添加提高了PI的玻璃化转变温度并改善了基体的冲击断裂强度、弯曲强度和硬度等,当Ti3C2Tx添加量为0.25wt%时,Ti3C2Tx/PI复合材料的玻璃化转变温度提高了17℃,冲击断裂强度提高了31%。 In order to improve the thermal properties and impact rupture strength, flexural strength and hardness et al mechanical properties of polyimide (PI), two-dimensional layered structure nanomaterial Ti3C2Tx was prepared by liquid-phase etching of a ternary layered ceramic Ti3AlC2. The crystal structure and morphology of as-prepared were characterized by XRD and FESEM. The Ti3C2Tx/PI composites with different concentrations of Ti3C2Tx were prepared by wet ball milling and hot pressing. The effects of Ti3C2Tx on the thermal properties, impact rupture strength, flexural strength and hardness of Ti3C2Tx/PI composites were investigated. Simultaneously, the fracture morphology was analyzed. The results suggest that Ti3C2Tx with a thickness of 20-50 nm is nanosheets layered structure, which can uniformly disperse in the PI matrix. During the curing process, PI enters the Ti3C2Tx layers and improves the bonding force between PI and Ti3C2Tx, resulting in good combining interface. The addition of Ti3C2Tx nanosheets enhance the glass transition temperature of PI and improve the impact rupture strength, flexural strength, and hardness properties of the matrix. When adding amount of Ti3C2Tx is 0.25wt%, the glass transition temperature of Ti3C2Tx/PI composite increases by 17℃ and the impact rupture strength ascends by 31%. 国家自然科学基金(51472075;51772077);河南省自然科学基金(182300410228;182300410275);河南省科技攻关项目(172102210284
[1] | 尤鹤翔, 文晓梅, 王晓东, 等. 高热稳定性聚酰亚胺抗静电复合薄膜的制备与表征[J]. 塑料工业, 2013, 41(1):120-122.YOU H X, WEN X M, WANG X D, et al. Preparation and characteriztion of the antistatic polyimide composite films with high thermal stability[J]. China Plastics Industry, 2013, 41(1):120-122(in Chinese). |
[2] | TERUI Y, MATSUDA S I, ANDO S, et al. Molecular structure and thickness dependence of chain orientation in aromatic polyimide films[J]. Journal of Polymer Science Part B:Polymer Physics, 2005, 43(15):2109-2120. |
[3] | 李洁, 张旭. 填充改性聚酰亚胺的研究进展[J]. 精细与专用化学品, 2017, 25(10):46-49.LI J, ZHANG X. Research progress of filling modification polyimide[J]. Fine and Specialty Chemicals, 2017, 25(10):46-49(in Chinese). |
[4] | 李应龙, 饶元元, 王维, 等. 聚酰亚胺/纳米MgO复合材料的制备与性能研究[J]. 高分子学报, 2014(7):970-975.LI Y L, RAO Y Y, WANG W, et al. Studies on preparation and properties of polyimide/nano-MgO composites[J]. Acta Polymerica Sinica, 2014(7):970-975(in Chinese). |
[5] | 王亚平, 李英芝, 张清华. 石墨烯/聚酰亚胺复合材料的制备与性能[J]. 高分子材料科学与工程, 2013, 29(12):144-147.WANG Y P, LI Y Z, ZHANG Q H. Preparation and property of grapheme/polyimide nanocomposites[J]. Polymer Materials Science and Engineering, 2013, 29(12):144-147(in Chinese). |
[6] | SATO K, HORIBE H, SHIRAI T, et al. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces[J]. Journal of Materials Chemistry, 2010, 20(14):2749-2752. |
[7] | LI T L, HSU S C. Preparation and properties of thermally conductive photosensitive polyimide/boron nitride nanocomposites[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2011, 121(2):916-922. |
[8] | NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253. |
[9] | TANG Q, ZHOU Z, SHEN P. Are MXenes promising anode materials for Li-ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134(40):16909-16916. |
[10] | 陈祥宝. 高性能树脂基体[M]. 北京:化学工业出版社, 1999.CHEN X B. High performance resin matrix[M]. Beijing:Chemical Industry Press, 1999(in Chinese). |
[11] | MEADOR M A. Recent advances in the development of processable high-temperature polymers1[J]. Annual Review of Materials Research, 1998, 28(1):599-630. |
[12] | ALIAS A, AHMAD Z, ISMAIL A B, et al. Preparation of polyimide/Al2O3 composite films as improved solid dielectrics[J]. Materials Science & Engineering B, 2011, 176(10):799-804. |
[13] | 王相文, 范勇, 陈昊, 等. 纳米Mg(OH)2-ZnO/聚酰亚胺复合薄膜的介电和热性能[J]. 复合材料学报, 2018, 35(1):30-34.WANG X W, FAN Y, CHEN H, et al. Dielectric and thermal properties of nano Mg(OH)2-ZnO/polyimide composite film[J]. Acta Materiae Compositae Sinica, 2018, 35(1):30-34(in Chinese). |
[14] | SCHRIVER M, REGAN W, GANNETT W J, et al. Graphene as a long-term metal oxidation barrier:Worse than nothing[J]. ACS Nano, 2013, 7(7):5763-5768. |
[15] | 文溢, 付志兵, 邓才波, 等. 氧化石墨烯/聚酰亚胺复合薄膜的制备工艺及阻水性能[J]. 复合材料学报, 2019, 36(1):20-27.WEN Y, FU Z B, DENG C B, et al. Preparation and water-blocking property of grapheme oxide/polyimide composite film[J]. Acta Materiae Compositae Sinica, 2019, 36(1):20-27(in Chinese). |
[16] | 郝继璨, 鲁云华, 肖国勇, 等. 原位氨基化氧化石墨烯/聚酰亚胺复合材料的制备及性能[J]. 复合材料学报, 2018, 35(6):1377-1385.HAO J C, LU Y H, XIAO G Y, et al. Preparation and properties of in-situ aminated grapheme oxide/polyimide composites[J]. Acta Materiae Compositae Sinica, 2018, 35(6):1377-1385(in Chinese). |
[17] | DIAHAM S, SAYSOUK F, LOCATELLI M L, et al. Huge improvements of electrical conduction and dielectric breakdown in polyimide/BN nanocomposites[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2016, 23(5):2795-2803. |
[18] | LI T L, HSU S C. Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride[J]. Journal of Physical Chemistry B, 2010, 114(20):6825-6829. |
[19] | CHIN S Y, HSIANG S J, CHEN Y T, et al. Study on thermal conductive BN/VGCF/polyimide resin composites[C]//20138th International Microsystems, Packaging, Assembly and Circuits Technology Conference. Taiwan:IEEE, 2013:315-318. |
[20] | ZHANG X, XUE M, YANG X, et al. Preparation and tribological properties of Ti3C2(OH)2 nanosheets as additives in base oil[J]. RSC Advances, 2014, 5(4):2762-2767. |
[21] | LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47):16676-16681. |
[22] | ZHANG H, WANG L, CHEN Q, et al. Preparation, mechanical and anti-friction performance of MXene/polymer composites[J]. Materials & Design, 2016, 92(11):682-689. |