|
- 2019
Zn还原氧化石墨烯(RGO)和ZnO/RGO自组装复合材料的电磁响应行为
|
Abstract:
以天然鳞片石墨为原料制备氧化石墨烯(GO),通过Zn将其还原为石墨烯(RGO),且生成的ZnO附着在RGO表面。采用XRD、SEM、FTIR、Raman、TEM和矢量网络分析仪(VNA)研究了不同还原温度对ZnO/RGO复合材料形貌、结构、氧化程度、电磁损耗特性、德拜弛豫模型及电磁响应行为的影响。结果表明:还原温度为50℃时RGO还原后结构更加完整,层间距为0.89 nm时ZnO/RGO复合材料的介电常数和磁导率均较高,在17.15 GHz时反射率达到-41.2 dB,反射损耗小于-10 dB的带宽为3.67 GHz。 The graphene oxide (GO) was preparaed by natural flake graphite, then it was reduced to graphene(RGO) by Zn. ZnO is attached to the surface of RGO. The structure, morphology, degree of oxidation, electromagnetic loss properties, Debye relaxation and microwave absorbing properties of ZnO/RGO composite were investigated by XRD, Raman, SEM, TEM, FTIR and vector network analyzer (VNA). The results show that when the reduction temperature is 50℃, the structure of RGO is more complete after reduction and the layer spacing is 0.89 nm, the permittivity and permeability of ZnO/RGO composite are higher. At 17.15 GHz, the reflectivity of ZnO/RGO composite is -41.2 dB, the bandwidth of the reflection loss of ZnO/RGO composite below -10 dB is 3.67 GHz. 国家自然科学基金(51372108
[1] | FIORI G, FRANCESCO B, GIUSEPPE I, et al. Electronics based on two-dimensional materials[J]. Nat Nanotechnol, 2014, 9(10):768-779. |
[2] | GALINDO B, BENEDITO A, GIMENEZ E, et al. Comparative study between the microwave heating efficiency of carbon nanotubes versus multilayer graphene in polypropylene nanocomposites[J]. Composites B:Engineering, 2016, 98:330-338. |
[3] | 礼嵩明, 蒋诗才, 望咏林, 等. "超材料"结构吸波复合材料技术研究[J]. 材料工程, 2017, 45(11):10-14. LI S M, JIANG S C, WANG Y L, et al. Study on "metamaterial" structural absorbing composite technology[J]. Journal of Materials Engineering, 2017, 45(11):10-14(in Chinese). |
[4] | CHEN C, LIANG W, NIEN Y, et al. Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites[J]. Materials Research Bulletin, 2017, 12(96):81-85. |
[5] | 赵海涛, 张强, 刘瑞萍, 等. 单分散纳米锌铁氧体的制备及其磁性能[J]. 材料工程, 2016, 44(1):103-107. ZHAO H T, ZHANG Q, LIU R P, et al. Synthesis and magnetic properties of monodisperse ZnFe2O4 nanoparticles[J]. Journal of Materials Engineering, 2016, 44(1):103-107(in Chinese). |
[6] | CHEN W, ZHU X, LIU Q, et al. Preparation of urchin-like strontium ferrites as microwave absorbing materials[J]. Materials Letters, 2017, 12(209):425-428. |
[7] | YANG H, YE T, LIN Y, et al. Microwave absorbing properties of the ferrite composites based on graphene[J]. Journal of Alloys and Compounds, 2016, 683:567-574. |
[8] | 丁一. 石墨烯基纳米复合电磁波吸收材料的研究[D]. 北京:北京科技大学, 2017. DING Y. Research on graphene-based nanocomposites for electromagnetic microwave absorption applications[D]. Beijing:University of Science & Technology, 2017(in Chinese). |
[9] | SUN X, HE J, LI G, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C, 2013, 1(4):765-777. |
[10] | HUANG Y, DING X, LI S, et al. Magnetic reduced graphene oxide nanocomposite as an effective electromagnetic wave absorber and its absorbing mechanism[J]. Ceramics International, 2016, 42(15):17116-17122. |
[11] | ZHANG H, LV X, LI Y, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano, 2010, 4(1):380-386. |
[12] | ZHANG X F, DONG X L, HUANG H, et al, Microwave absorption properties of the carbon-coated nickel nanocapsules[J]. Applied Physics Letters, 2006, 89(5):053115. |
[13] | FRENKEL J, DORFMAN J. Spontaneous and induced magnetisation in ferromagnetic bodies[J]. Nature, 1930, 126, 274-275. |
[14] | MILES P A, WESTAHAL W B, HIPPEL V. Dielectric spectroscopy of ferromagnetic semiconductors[J]. Review Modern Physics, 1957, 29(3):279-307. |
[15] | CHEN H, HUANG Z, HUANG Y, et al. Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands[J]. Carbon, 2017, 124:506-514. |
[16] | RUTTER G M, CRAIN J N, GUISINGER N P, et al. The dissimilarities between graphene and frame-like structures[J]. Science, 2007, 317:219-222. |
[17] | 刘克, 王际童, 龙东辉, 等. 低密度Fe3O4/中孔炭微球复合材料的可规模制备及吸波性能[J]. 无机材料学报, 2017, 32(10):1023-1028. LIU K, WANG J T, LONG D H, et al, Scalable preparation and microwave absorption of lightweight Fe3O4/mesoporous carbon microsphere composites[J]. Journal of Inorganic Materials, 2017, 32(10):1023-1028(in Chinese). |
[18] | VIVEK K S, ANUJ S, MANOJ K P, et al. Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite[J]. Carbon, 2012, 50(6):2202-2208. |
[19] | GU J W, YANG X T, LV Z Y, et al. Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity[J]. Heat Mass Transfer, 2016, 92:15-22. |
[20] | 成来飞, 莫然, 殷小玮, 等. 吸波结构型陶瓷基复合材料[J]. 硅酸盐学报, 2017, 45(12):1738-1747.CHENG L F, MO R, YIN X W, et al. Wave-absorbing structural ceramic matrix composites[J]. Journal of the Chinese Ceramic Society, 2017, 45(12):1738-1747(in Chinese). |
[21] | 陈宁, 王海滨, 刘树信. 空心粉煤灰对铁氧体-炭黑/水泥基复合材料吸波性能的影响[J]. 复合材料学报, 2017, 34(6):1381-1387. CHEN N, WANG H B, LIU S X. Effects of hollow fly ash on microwave absorbing properties of ferrite-carbon black/cement based composites[J]. Acta Materiae Compositae Sinica, 2017, 34(6):1381-1387(in Chinese). |
[22] | WANG L, GUAN Y, XU Q, et al. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@matal-organic framework[J]. Chemical Engineering Journal, 2017, 326:945-955. |
[23] | HAN M, YIN X, LUO K, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry A, 2014, 2(39):16403-16409. |
[24] | SUKANTA D, GANESH C N, SAHU S K, et al. Development of FeCoB/graphene oxide based microwave absorbing materials for X-band region[J]. Journal of Magnetism and Magnetic Materials, 2015, 384:224-228. |
[25] | VICTOR V I, MESHI B C, POPOVA I, et al. First-principles study of the structural and electronic properties of graphene absorbed on MnO(111) surfaces[J]. Computational and Theoretical Chemistry, 2016, 1098:22-30. |
[26] | ZHANG X, WANG G, CAO W, et al. Enhanced microwave absorption property of reduced graphene oxide(RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride[J]. ACS Applied Materials and Interfaces, 2014, 6(10):7471-7478. |
[27] | HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339. |
[28] | KOVTYUKHOVA N I, OLLIVIER P J, MARTIN B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chemical Materials, 1999, 11(3):771-778. |
[29] | BAI X, ZHAI Y, ZHANG Y. Green approach to prepare graphene-based composites with high microwave absorption capacity[J]. Journal of Physical Chemistry C, 2011, 115(23):11673-11677. |
[30] | ZHANG Y, HUANG Y, CHEN H, et al. Composition and structure control of ultralight graphene foam for high-performance microwave absorption[J]. Carbon, 2016, 105:438-447. |
[31] | 郭晓琴. 磁性纳米粒子负载石墨烯的结构调控及吸波机理研究[D]. 郑州:郑州大学, 2016. GUO X Q. Structure regulation and microwave absorption mechanism of graphene loaded magnetic nanoparticles[D]. Zhengzhou:Zhengzhou University, 2016(in Chinese) |
[32] | REID A H M, IMELA V K, KIRILYUK A, et al. Optical excitation of a forbidden magnetic resonance mode in a doped lutetium-iron-garnet film via the inverse Faraday effect[J]. Physical Review Letters, 2010, 105(10):107402. |
[33] | ZHANG Y, HUANG Y, ZHANG T, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials, 2015, 27(12):2049-2053. |
[34] | SUN S L, HE Q, XIAO S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5):426-431. |