全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

SiFe@C负极复合材料的结构及性能
Structure and property of SiFe@C anode composites

DOI: 10.13801/j.cnki.fhclxb.20181121.002

Keywords: 锂离子电池,SiFe@C,负极复合材料,机械球磨,热解温度,碳包覆
lithium ion battery
,SiFe@C,anode composites,mechanical ball milling,pyrolysis temperature,carbon-coating

Full-Text   Cite this paper   Add to My Lib

Abstract:

以SiFe合金和沥青为原料,采用机械球磨和高温热解法制备了SiFe@C负极复合材料,并对SiFe及一系列不同热解温度下制备的SiFe@C复合材料进行对比研究。利用XRD、SEM、TEM、EDS和恒流充放电测试仪对SiFe@C复合材料的物相、颗粒形貌及电化学性能进行表征。结果表明,在850℃热解温度下制得的SiFe@C负极复合材料首次放电比容量达到1 376.25 mAh/g,首次库仑效率为86.35%,经过70次循环后放电比容量为940.33 mAh/g,库仑效率达到98.78%,容量保持率为76.32%,循环性能远高于SiFe和其他热解温度下的SiFe@C复合材料,而且具有良好的倍率性能。 The SiFe@C anode materials were prepared by mechanical ball milling and high-temperature pyrolysis method with SiFe and pitch as the raw materials, and the characteristics of a series of SiFe@C composites prepared at different pyrolysis temperatures were compared with those of uncoated SiFe. The phase composition, morphology and electrochemical performance of SiFe@C anode composites were detected by XRD, SEM, TEM, EDS and constant current charge-discharge test. The results reveal that the initial discharge specific capacity of SiFe@C composite electrode prepared at 850℃ is 1 376.25 mAh/g with the initial coulombic efficiency of 86.35%. After 70 cycles, the discharge specific capacity is 940.33 mAh/g, the coulombic efficiency is 98.78% and the capacity retention rate is 76.32%, which indicates that its cycling stability and rate capability is much higher than the SiFe and other SiFe@C electrode composites obtained at other temperatures. 广东省自然科学基金(2014A030308015);广东省省级科技计划项目(2015B010116002;2017A070701022);广东省科学院实施创新驱动发展能力建设专项(2017GDASCX-0110

References

[1]  HUGGINS R A, BOUKAMP B A. All-solid electrodes with mixed conductor matrix[J]. Journal of the Electrochemical Society, 1981, 128(4):725-729.
[2]  KIM I, BLOMGREN G E, KUMTA P N. Nanostructured Si/TiB2 composite anodes for Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2003, 6(8):157-161.
[3]  CUI L F, RUFFO R, CHAN C K, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters, 2009, 9(1):491-495.
[4]  ZUO P, YIN G, ZHAO J, et al. Electrochemical reaction of the SiMn/C composite for anode in lithium ion batteries[J]. Electrochimica Acta, 2007, 52(4):1527-1531.
[5]  ZHANG P, HUANG L, LI Y, et al. Si/Ni3Si-encapulated carbon nanofiber composites as three-dimensional network structured anodes for lithium-ion batteries[J]. Electrochimica Acta, 2016, 192:385-391.
[6]  DONG H, FENG R X, AI X P, et al. Structural and electrochemical characterization of Fe-Si/C composite anodes for Li-ion batteries synthesized by mechanical alloying[J]. Electrochimica Acta, 2004, 49(28):5217-5222.
[7]  仁呈强, 李铁虎, 宋发举. 沥青热解模型[J]. 化学工程, 2007, 35(7):27-30.REN C Q, LI T H, SONG F J. Pyrolysis model of pitch[J]. Chemical Engineering, 2007, 35(7):27-30(in Chinese).
[8]  MIN B G, LEE D H. Effects of dispersed Si-phase on thermoelectric properties of FeSi2 prepared by mechanical alloying and sintering[C]//16th International Conference on Thermoelectrics. Dresden:IEEE, 1997:315-320.
[9]  HE W, TIAN H, ZHANG S, et al. Scalable synthesis of Si/C anode enhanced by FeSiem>x nanoparticles from low-cost ferrosilicon for lithium-ion batteries[J]. Journal of Power Sources, 2017, 353:270-276.
[10]  李伟文, 赵新兵, 周邦昌. β-FeSi2热电材料研究进展[J]. 材料导报, 2002, 16(5):14-16.LI W W, ZHAO X B, ZHOU B C. Progress in research on thermoeletric materials β-FeSi2[J]. Materials Review, 2002, 16(5):14-16(in Chinese).
[11]  XU Y, ZHU Y, HAN F, et al. 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries[J]. Advanced Energy Materials, 2015, 5(1):1400753.
[12]  赫文秀, 于慧颖, 张永强, 等. Ni(OH)2-碳纳米管-还原氧化石墨烯复合材料的制备及电化学性能[J]. 复合材料学报, 2018, 35(7):1921-1929.HE W X, YU H Y, ZHANG Y Q, et al. Preparation and electrochemical properties of Ni(OH)2-carbon nanotubes-reduced graphene oxide composites[J]. Acta Materiae Compositae Sinica, 2018, 35(7):1921-1929(in Chinese).
[13]  TERRANOVA M L, ORLANDUCCI S, TAMBURRI E, et al. Si/C hybrid nanostructures for Li-ion anodes:An overview[J]. Journal of Power Sources, 2014, 246(3):167-177.
[14]  LEE K L, JUNG J Y, LEE S W, et al. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries[J]. Journal of Power Sources, 2004, 129(2):270-274.
[15]  XING W, WILSON A M, EGUCHI K, et al. Pyrolyzed polysiloxanes for use as anode materials in lithium ion batteries[J]. Journal of the Electrochemical Society, 1997, 144(7):2410-2416.
[16]  REN J, WANG K, HE X, et al. Studies of alloy based anode materials for lithium ion batteries[J]. Progress in Chemistry, 2005, 17(4):597-602.
[17]  LEE K J, YU S H, KIM J J, et al. Si7Ti4Ni4 as a buffer material for Si and its electrochemical study for lithium ion batteries[J]. Journal of Power Sources, 2014, 246(3):729-735.
[18]  SONG H, WANG H X, LIN Z, et al. Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2016, 26(4):524-531.
[19]  YOON S, PARK C M, KIM H, et al. Electrochemical properties of Si-Zn-C composite as an anode material for lithium-ion batteries[J]. Journal of Power Sources, 2007, 167(2):520-523.
[20]  LEE H Y, LEE S M. Graphite-FeSi alloy composites as anode materials for rechargeable lithium batteries[J]. Journal of Power Sources, 2002, 112(2):649-654.
[21]  陈秀娟, 高恒蛟, 封小鹏, 等. 热处理工艺对铁硅化合物相转变的影响[J]. 粉末冶金技术, 2011, 29(4):274-278.CHEN X J, GAO H J, FENG X P, et al. Influence of heat-treatment conditions on Fe-Si intermetallics phase transformation[J]. Powder Metallurgy Technology, 2011, 29(4):274-278(in Chinese).
[22]  TZENG S S, PAN J H. Densification of two-dimensional carbon composites by pitch impregnation[J]. Materials Science and Engineering A, 2001, 316(1-2):127-134.
[23]  HESSAM G, MING A, NING C. In situ electro chemical lithiation/delithiation observation of individual amorphous Si nanorods[J]. ACS Nano, 2011, 5(10):7805-7811.
[24]  KOJIMA T, MASUMOTO K, OKAMOTO M A, et al. Cheminform abstract:Formation of β-FeSi2 from the sintered eutectic alloy FeSi-Fe2Si5 doped with cobalt[J]. ChemInform, 1990, 21(24):20-23.
[25]  BELYAEV E, MAMYLOV S, LOMOVSKY O. Mechanochemical synthesis and properties of thermoelectric material β-FeSi2[J]. Journal of Materials Science, 2000, 35(8):2029-2035.
[26]  WU J, QIN X, ZHANG H, et al. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode[J]. Carbon, 2015, 84(1):434-443.
[27]  DONG H, AI X P, YANG H X. Carbon/Ba-Fe-Si alloy composite as high capacity anode materials for Li-ion batteries[J]. Electrochemistry Communications, 2003, 5(11):952-957.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133