全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Zn-β-磷酸钙/Ti生物复合材料组织及性能
Microstructure and properties of Zn-β-tricalcium phosphate/Ti biocomposites

DOI: 10.13801/j.cnki.fhclxb.20181122.003

Keywords: 热处理,生物复合材料,显微组织,硬度,磨损
heat treatment
,biocomposites,microstructure,hardness,wear

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用化学沉淀法制备掺杂Zn的β-磷酸钙(β-TCP)粉末,Zn-β-TCP与Ti粉以3∶7(质量比)混合均匀经真空烧结得到Zn-β-TCP/Ti生物复合材料。结合金相观察、SEM、XRD等进行微观组织和表面形貌观察、物相分析,并进行显微硬度、摩粒磨损、单轴压缩和体外生物活性测试。结果表明:Zn-β-TCP粉体中粒径(D50)集中在1~20 μm。β-TCP/Ti生物复合材料成分为TiO2、Ti、β-TCP和CaTiO3,Zn-β-TCP/Ti复合材料成分为TiO2、Ti、β-TCP、CaTiO3和ZnO,Zn2+固溶到β-TCP晶格使衍射峰偏移,掺杂10mol% Zn的偏移角度最大。β-TCP结晶度随Zn掺杂量的增大而降低。β-TCP/Ti复合材料的TiO2相弥散分布在网状β-TCP相中,Zn摩尔分数为10mol%时,Zn-β-TCP/Ti复合材料的孔隙孔径在200~300 μm,满足工程支架材料的要求,且硬度最高为HV 346.2,磨损率最低为0.051 mgmm-2,抗压强度在130~180 MPa之间,弹性模量最大为8.021 GPa,Zn的加入提高了β-TCP/Ti复合材料的力学性能。类骨磷灰石的积累随在模拟体液中浸泡时间的延长而增多,Zn-β-TCP/Ti生物复合材料具有良好的生物活性。 Zn doped β-tricalcium phosphate (β-TCP) powder was prepared by the chemical coprecipitation, mixed with Ti powder at 3:7 (mass ratio) and pressed evenly, and Zn doped β-TCP/Ti composite samples were obtained by vacuum sintering. The microstructure, surface morphology and phase analysis were carried out by metallographic observation, SEM and XRD, and microhardness, abrasive wear, uniaxial compression and in vitro bioactivity tests were carried out. The results show that the particle size (D50) in Zn-β-TCP powder is focus on 1-20 μm. The component of Zn-β-TCP/Ti composite are TiO2, β-TCP and CaTiO3. The phases of Zn-β-TCP/Ti composites consist of TiO2, β-TCP, CaTiO3 and ZnO. When Zn2+ is dissolved into β-TCP lattice, the diffraction peak is shifted, and the Zn-β-TCP/Ti biocomposite with 10mol% Zn has the largest migration angle. The crystallinity of β-TCP decreases with the increase of Zn. The TiO2 phase of the β-TCP/Ti composite is dispersed in the net β-TCP phase. The pore size of the Zn-β-TCP/Ti composite with 10mol% Zn is 200-300 μm, which meets the requirements of engineering scaffold materials, with the highest microhardness of HV 346.2, the lowest wear loss of 0.051 mgmm-2, the compressive strength between 130-180 MPa, and the maximum elastic modulus of 8.021 GPa. The addition of Zn improves the microhardness and wear resistance of the Zn-β-TCP/Ti composites. The accumulation of carbonate hydroxyapatite increases with the soaking in simulated body fluid, and the Zn-β-TCP/Ti biocomposites have good bioactivity

References

[1]  程思敏, 陈丽杰, 洪阳阳, 等. 羟基磷灰石的表面改性及其对聚乳酸基多孔支架性能的影响[J]. 复合材料学报, 2018, 35(5):1087-1094.CHENG S M, CHEN L J, HONG Y Y, et al. Surface modification of hydroxyapatite and effect on the properties of porous scaffolds based on polylactic acid[J]. Acta Materiae Compositae Sinica, 2018, 35(5):1087-1094(in Chinese).
[2]  LIM H P, PARK S W, YUN K D, et al. Novel-TCP coated titanium nanofiber surface for enhanced bone growth[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(2):853-867.
[3]  RODRIGUEZ G M, BOWEN J, GROSSIN D, et al. Functionalisation of Ti6Al4V and hydroxyapatite surfaces with combined peptides based on KKLPDA and EEEEEEEE peptides[J]. Colloids and Surfaces B:Biointerfaces, 2017, 160:154-160.
[4]  DO P R F, ESTEVES G C, SANTOS E L D S, et al. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy[J]. PLOS One, 2018, 13(5):196-208.
[5]  CHEN Y, KENT D, BERMINGHAM M, et al. Manufacturing of graded titanium scaffolds using a novel space holder technique[J]. Bioact Mater, 2017, 2(4):248-262.
[6]  狄玉丽, 冯波, 范兴平, 等. 稀土LaF3增强型梯度结构多孔钛及其力学性能[J]. 稀有金属材料与工程, 2013, 42(4):814-820.DI Y L, FENG B, FAN X P, et al. Gradient structural porous titanium enhanced by LaF3 and its mechanical properties[J]. Rare Metal Materials and Engineering, 2013, 42(4):814-820(in Chinese).
[7]  邹慧, 鲁琦, 田卫东, 等. 非传统粉末冶金制备生物医用多孔钛及其性能[J]. 功能材料与器件学报, 2010, 16(5):490-498.ZOU H, LU Q, TIAN W D, et al. Preparation and characterization of bio-medical porous titanium by unconventional powder metallurgy[J]. Journal of Functional Materials and Devices, 2010, 16(5):490-498(in Chinese).
[8]  GAO P, ZHANG H Q, LIU Y, et al. Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo[J]. Nature, 2016, 6(3):23367-23384.
[9]  ZHAO S F, DONG W J, JIANG Q H, et al. Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces[J]. Journal of Zhejiang University Science B, 2013, 14(6):518-529.
[10]  KOKUBO T, YAMAGUCHI S. Novel bioactive materials developed by simulated body fluid evaluation:Surface-modified Ti and the alloys[J]. Acta Biomater, 2016, 44(5):16-28.
[11]  DANTAS T A, ABREU C S, COSTA M M, et al. Bioactive materials driven primary stability on titanium biocomposites[J]. Materials Science & Engineering C:Materials for Biological Applications, 2017, 77:1104-1110.
[12]  栗智, 张磊, 张玉勤, 等. 表面多孔NiTi-羟基磷灰石/NiTi生物复合材料的制备与性能[J]. 复合材料学报, 2017, 34(7):1540-1546.LI Z, ZHANG L, ZHANG Y Q, et al. Preparation and properties of surface porous NiTi-hydroxyapatite/NiTi biocomposites[J]. Acta Materiae Compositae Sinica, 2017, 34(7):1540-1546(in Chinese).
[13]  沈娟, 金波, 蒋琪英, 等. 羟基磷灰石/合成高分子复合材料的制备方法、性能及其应用研究进展[J]. 化工进展, 2011, 30(8):1749-1756.SHEN J, JIN B, JIANG Q Y, et al. Preparation, properties and applications of hydroxyapatite/synthetic polymer composites[J]. Chemical Industry and Engineering Progress, 2011, 30(8):1749-1756(in Chinese).
[14]  冀晓媛, 蔡银, 谢安, 等. 基于纳米压痕法的羟基磷灰石/聚乳酸复合材料力学性能表征[J]. 复合材料学报, 2018, 35(3):553-563.JI X Y, CAI Y, XIE A, et al. Mechanical properties of hydroxyapatite/poly(lactic acid) composites based on nano-indentation method[J]. Acta Materiae Compositae Sinica, 2018, 35(3):553-563(in Chinese).
[15]  JIANG S, HUANG L J, AN Q, et al. Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81(3):10-25.
[16]  颉芳霞, 何雪明, 俞经虎, 等. 生物医用多孔Ti-6Mo合金选择性激光烧结的结构特征和力学行为[J]. 稀有金属材料与工程, 2016, 45(6):1477-1483.XIE F X, HE X M, YU J H, et al. Structural characteristics and mechanical behavior of selective laser sintered porous Ti-6Mo alloy for biomedical applications[J]. Rare Metal Materials and Engineering, 2016, 45(6):1477-1483(in Chinese).
[17]  李洋, 冉旭, 苟立, 等. 微波合成掺锶羟基磷灰石[J]. 化工进展, 2007, 26(10):1466-1474.LI Y, RAN X, GOU L, et al. Microwave induced synthesis of strontium substituted hydroxyapatite[J]. Chemical Industry and Engineering Progress, 2007, 26(10):1466-1474(in Chinese).
[18]  胡丹丹, 李恺, 郑学斌. 镁、锌和锶离子掺杂硅酸钙涂层成骨行为比较研究[J]. 热喷涂技术, 2016, 8(6):31-36.HU D D, LI K, ZHENG X B. Comparative study on the osteogenic behavior of calcium silicate coatings doped with magnesium, zinc and strontium ions[J]. Thermal Spraying Technology, 2016, 8(6):31-36(in Chinese).
[19]  RESENDE R F B, FERNANDES G V O, SANTOS S R A, et al. Long-term biocompatibility evaluation of 0.5%zinc containing hydroxyapatite in rabbits[J]. Journal of Materials Science:Materials in Medicine, 2013, 24(6):1455-1470.
[20]  迟明超. 无机纳米粒子掺杂活性碳纳米纤维的制备及生物性能评价[D]. 北京:北京化工大学, 2012.CHI M C. Preparation and characteristics of inorganic nanometer partical doped carbon nanofibers[D]. Beijing:Beijing University of Chemical Technology, 2012(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133