全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Parallel ADR Detection Based on Spark and BCPNN

DOI: 10.26599/TST.2018.9010074

Keywords: Adverse Drug Reaction (ADR),Bayesian Confidence Propagation Neural Network (BCPNN),parallel,Spark

Full-Text   Cite this paper   Add to My Lib

Abstract:

Adverse Drug Reaction (ADR) is one of the major challenges to the evaluation of drug safety in the medical field. The Bayesian Confidence Propagation Neural Network (BCPNN) algorithm is the main algorithm used by the World Health Organization to monitor ADRs. Currently, ADR reports are collected through the spontaneous reporting system. However, with the continuous increase in ADR reports and possible use scenarios, the efficiency of the stand-alone ADR detection algorithm will encounter considerable challenges. Meanwhile, the BCPNN algorithm requires a certain number of disk I/O, which leads to considerable time consumption. In this study, we propose a Spark-based parallel BCPNN algorithm, which speeds up data processing and reduces the number of disk I/O in BCPNN, and two optimization strategies. Then, the ADR data collected from the FDA Adverse Event Reporting System are used to verify the performance of the proposed algorithm and its optimization strategies. Experiments show that the parallel BCPNN can significantly accelerate data processing and the optimized algorithm has a high acceleration rate and can effectively prevent memory overflow. Finally, we apply the proposed algorithm to a dataset provided by a real medical consortium. Experiments further prove the performance and practical value of the proposed algorithm

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133