聚合物-表面活性剂复合物在诸多工业领域都具有重要的应用潜力,但利用CO2气体调节复合物的相互作用及微观聚集体形貌鲜见报道。本文基于三嵌段共聚物普兰尼克F127制备了五嵌段共聚物聚甲基丙烯酸二乙氨基乙酯-block-聚氧化乙烯-block-聚氧化丙烯-block-聚氧化乙烯-block-聚甲基丙烯酸二乙氨基乙酯(PDEAEAM-b-F127-b-PDEAEMA)。通过聚合物溶液pH和电导率的变化研究了PDEAEAM-b-F127-b-PDEAEMA的CO2刺激响应性,应用动态光散射和透射电子显微镜考察了PDEAEAM-b-F127-b-PDEAEMA与阴离子氟碳表面活性剂在CO2刺激作用下的相互作用。结果表明,CO2/N2的交替通入可以使PDEAEAM-b-F127-b-PDEAEMA产生相应的质子化/去质子化过程,从而可逆地改变PDEAEAM-b-F127-b-PDEAEMA溶液的pH值和电导率;质子化/去质子化过程可以“开关”共聚物与阴离子氟碳表面活性剂之间的静电吸引作用,使体系中的聚集体在球形胶束与蠕虫状胶束之间发生可逆转变。CO2可控的聚合物-表面活性剂复合物的形貌转变为构建气体响应的软材料提供了一种新的思路。 A polymer-surfactant complex is significant in understanding the interactions between amphiphilic molecules and has great potential for use in a vast number of industries. In addition, the stimuli-responsive polymer-surfactant complex represents a hot research topic for the colloid community. However, the use of CO2 gas to tune their interaction and the corresponding morphological change in the polymer-surfactant complex has been less documented. In this work, the commercially available triblock copolymer Pluronic F127 was used as a starting material and the macromolecular initiator Br-F127-Br was synthesized via esterification. Then, the pentablock copolymer poly(2-(diethylamino)ethyl methacrylate))-block-F127-block-poly(2-(diethylamino)ethyl methacrylate)) (PDEAEAM-b-F127-b-PDEAEMA) was prepared via atom transfer radical polymerization (ATRP) of Br-F127-Br and the monomer 2-(diethylamino)ethyl methacrylate. Both Br-F127-Br and PDEAEAM-b-F127-b-PDEAEMA were characterized by FT-IR and 1H NMR spectroscopies as well as gel permeation chromatography (GPC). The results indicated that both Br-F127-Br and PDEAEAM-b-F127-b-PDEAEMA were synthesized successfully. The CO2-responsive behavior of the pentablock copolymer was examined by tracking the changes in pH and electrical conductivity of the polymer solution after alternatingly bubbling CO2 and N2. It was found that cyclic streaming of CO2/N2 could alter the pH of the polymer solution between 7.2 and 5.3, leading to the protonation degree of PDEAEAM-b-F127-b-PDEAEMA varying between 0.26 and 0.96; this in turn varied the electrical conductivity of the polymer solution between 19.4 μS?cm?1 and 70.6 μS?cm?1. The reversible changes in pH and electrical conductivity of the polymer solution indicate the good CO2-stimuli responsiveness of PDEAEAM-b-F127-b-PDEAEMA. The interaction of PDEAEAM-b-F127-b-PDEAEMA with an anionic fluorocarbon surfactant potassium nonafluoro-1-butanesulfonate (C4F9SO3K) with and without CO2 was studied by ultraviolet-visible absorption spectrometry (UV-Vis), dynamic light