|
- 2019
Validation of Pharmacogenetic Testing Before Initiation of Warfarin TherapyDOI: https://doi.org/10.3329/uhj.v15i2.42665 Abstract: Warfarin is an oral anticoagulant used to prevent or treat clotting disorders associated with venous thrombosis, pulmonary embolism, atrial fibrilation, cardiac valve replacement, stroke and acute myocardial infarction. It is a vitamin K antagonist composed of S- and R- isomers. The more potent S-warfarin is metabolized by cytochrome 450 isoenzyme 2C9 (CYP2C9), encoded by CYP2C9 gene. Warfarin exerts its anticoagulants effect by inhibitingits target enzyme vitamin K epoxide reductase (VKOR), encoded by vitamin K epoxide reductase subunit 1 (VKOR1) gene. Genetic variation in the CYP2C9 and VKOR1 gene can affect warfarin efficacy and dose required to achieve stable International Normalization Ratio (INR). Specifically two variants in the CYP2CP gene (CYP2C9*2 and CYP2C9*3) result in an enzyme with reduced activity, leading to increased active warfarin levels. A variant in the VKORC1 gene (VKORC1-1639 G>A) can lead to reduced gene expression resulting in decresed level of VKOR. Together these three variants can account for 40-70% of the variability of warfarin dose. Carriers of variant alleles are at higher risk for bleeding complications, particularly at the induction of warfarin therapy. So, genotype-guided dosing algorithms would be better approximate for maintenance of warfarin dose than fixed-dose algorithms
|