全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Extracting Interesting Regions and Trips from Taxi Trajectory Data | Huneiti | Modern Applied Science | CCSE

DOI: 10.5539/mas.v13n2p258

Full-Text   Cite this paper   Add to My Lib

Abstract:

The increasing availability of cutting-edge location-acquisition technologies such as GPS devices, has led to the generation of huge datasets of spatial trajectories. These trajectories store important information regarding the movement of people, vehicles, robots, animals, users of social networks, etc. Many research initiatives have applied data mining techniques in order to extract useful knowledge from this data. ?An important, and yet complicated, pre-processing step in mining patterns from trajectory data, is the identification of the Regions of Interest (RoI) that have been collectively navigated by a set of trajectories. The RoI’s are being manually and subjectively pre-defined by a group of experts as popular regions, regardless of the actual behaviour of the moving objects. This research emphasizes the usefulness of applying an unsupervised machine learning technique, namely Self Organizing Map (SOM), in order to identify the RoI’s associated with a trajectory dataset depending on the moving objects’ behaviour. The research experiments were conducted using 180 thousand of the trajectories generated by 442 taxis running in the city of Porto, in Portugal, and they demonstrate the ability of SOM in identifying the RoI’s and interesting taxi trips within the city

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133