全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Modeling the Influence of Temperature-dependent Thermal Properties on the Freezing Front | Chavarria | Journal of Food Research | CCSE

DOI: 10.5539/jfr.v8n6p129

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although numerical methods enable comprehensive analyses of food freezing, a thorough quantification is lacking the effects on the process introduced by uncertainties in variable thermal properties. Analytical models are, however, more suitable tools to perform such calculations. We aim to quantify these effects by developing a solution to the freezing front (FF) problem subject to temperature-dependent thermal properties and one-dimensional convective cooling. The heat integral balance method, Kirchhoff's transformation, and Plank's cooled-surface temperature equation (as a seed function) enabled us to obtain an approximate solution to the FF penetration time. To optimize model accuracy, two adjustable parameters were correlated with the inputs via nonlinear regression referenced to numerical simulation FF data. The mapped sensitivities, generated by perturbations in the temperature-dependent thermal conductivity and effective heat capacity, undergo rapid nonlinear changes for Biot numbers below 6. Above this level, these sensitivities stabilize depending on the cooling medium temperature and a thermal conductivity parameter. The median thermal conductivity-driven sensitivity is 0.348 and its interquartile range (IQR) is 0.220 to 0.425, whereas the median latent heat-driven sensitivity is 0.967 (IQR: 0.877 to 0.985). Statistical error measures and a ten-split K-fold validation support the model accuracy and reliability of the parameter estimates. Together, the model allows for gaining insights into the nonlinear behavior and magnitude of the influence of variable properties on the FF for a wide range of conditions. Nonlinear methods and prior information enable practical modeling of transport phenomena in foods

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133