全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Fuzzy Logic and Back-Propagation Neural Networks for Optimal Performance | Al-Refaie | Modern Applied Science | CCSE

DOI: 10.5539/mas.v13n2p157

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thus far, the Taguchi technique is found only efficient in obtaining the combination of optimal factor settings when a single product/process response is considered. In today’s dynamic environment, customers are interested in multiple quality responses. This research, therefore, utilizes fuzzy logic and backward-propagation neural networks (BPNNs) to optimize process performance for products of multiple quality responses. In this research, quality characteristics are transformed to signal to noise (S/N) ratios, which are then used as inputs to a fuzzy model to obtain a single common output measure (COM). Next, BPNNs are employed to obtain full-factorial experimental data. Finally, the combination of factor levels that maximizes the average COM value is chosen as the optimal combination. Three case studies are provided for illustration; in all of which the proposed approach provided the largest total anticipated improvement. This indicates that the proposed approach is more efficient than Taguchi-fuzzy, grey-Taguchi, and Taguchi-utility methods. In conclusion, the fuzzy-BPNN approach may greatly assist process/product engineers in optimizing performance with multiple responses in a wide range of business applications

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133