Alzheimer’s disease (AD) is the common cause of
dementia which shows the neuro-pathologies like an accumulation of amyloid-β (Aβ)
and degeneration of cholinergic neuron. Olfactory bulbectomized (OBX) mice show
some of AD features, so they have been used to research as AD model.
Mesenchymal stem cells (MSCs) can differentiate into many kinds of cells,
including neuronal cells. In this study, we intranasally administrated the
conditioned medium derived from cultured umbilical cord (UC) MSCs. The
intranasal administration of the MSCs medium restored the cognitive impairment
observed in OBX mice. In addition, the decreased number of choline
acetyltransferase-positive cells in the medial septum was restored by the
conditioned medium administration. In conclusion, MSCs-derived conditioned
medium may have protective effects of cholinergic neurons in the medial septum,
thereby rescuing the cognitive impairment of OBX.
References
[1]
Perl, D.P. (2010) Neuropathology of Alzheimer’s Disease. Mount Sinai Journal of Medicine, 77, 32-42. http://dx.doi.org/10.1002/msj.20157
[2]
Mullard, A. (2018) BACE Failures Lower AD Expectations, again. Nature Reviews Drug Discover, 17, 385. http://dx.doi.org/10.1038/nrd.2018.94
[3]
Cummings, J., Lee, G., Ritter, A., Sabbagh, M. and Zhong, K. (2019) Alzheimer’s Disease Drug Development Pipeline: 2019. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 5, 272-293.
http://dx.doi.org/10.1016/j.trci.2019.05.008
[4]
Egan, M.F., Kost, J., Tariot, P.N., Aisen, P.S., Cummings, J.L., Vellas, B., Sur, C., Mukai, Y., Voss, T., Furtek, C., Mahoney, E., Harper Mozley, L., Vandenberghe, R., Mo, Y. and Michelson, D. (2018) Randomized Trial of Verubecestat for Mild-to- Moderate Alzheimer’s Disease. The New England Journal of Medicine, 378, 1691-1703.
http://dx.doi.org/10.1056/NEJMoa1706441
[5]
Salloway, S., Sperling, R., Fox, N.C., Blennow, K., Klunk, W., Raskind, M., Sabbagh, M., Honig, L.S., Porsteinsson, A.P., Ferris, S., Reichert, M., Ketter, N., Nejadnik, B., Guenzler, V., Miloslavsky, M., Wang, D., Lu, Y., Lull, J., Tudor, I.C., Liu, E., Grundman, M., Yuen, E., Black, R., Brashear, H.R. and The Bapineuzumab 301 and 302 Clinical Trial Investigators (2014) Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer’s Disease. The New England Journal of Medicine, 370, 322-333. http://dx.doi.org/10.1056/NEJMoa1304839
[6]
Wessels, A.M., Tariot, P.N., Zimmer, J.A., Selzler, K.J., Bragg, S.M., Andersen, S.W., Landry, J., Krull, J.H., Downing, A.M., Willis, B.A., Shcherbinin, S., Mullen, J., Barker, P., Schumi, J., Shering, C., Matthews, B.R., Stern, R.A., Vellas, B., Cohen, S., MacSweeney, E., Boada, M. and Sims, J.R. (2019) Efficacy and Safety of Lanabecestat for Treatment of Early and Mild Alzheimer Disease: The AMARANTH and DAYBREAK-ALZ Randomized Clinical Trials. JAMA Neurology, 77, 199-209.
http://dx.doi.org/10.1001/jamaneurol.2019.3988
[7]
Hozumi, S., Nakagawasai, O., Tan-No, K., Niijima, F., Yamadera, F., Murata, A., Arai, Y., Yasuhara, H. and Tadano, T. (2003) Characteristics of Changes in Cholinergic Function and Impairment of Learning and Memory-Related Behavior Induced by Olfactory Bulbectomy. Behavioural Brain Research, 138, 9-15.
[8]
Aleksandrova, I.Y., Kuvichkin, V.V., Kashparov, I.A., Medvinskaya, N.I., Nesterova, I.V., Lunin, S.M., Samokhin, A.N. and Bobkova, N.V. (2004) Increased Level of β-Amyloid in the Brain of Bulbectomized Mice. Biochemistry (Moscow), 69, 176-180.
http://dx.doi.org/10.1023/b:biry.0000018948.04559.ab
[9]
Yamamoto, Y. and Fukunaga, K. (2013) Donepezil Rescues the Medial Septum Cholinergic Neurons via Nicotinic ACh Receptor Stimulation in Olfactory Bulbectomized Mice. Advances in Alzheimer’s Disease, 2, 161-170.
http://dx.doi.org/10.4236/aad.2013.24021
[10]
Han, F., Shioda, N., Moriguchi, S., Yamamoto, Y., Raie, A.Y., Yamaguchi, Y., Hino, M. and Fukunaga, K. (2008) Spiro[Imidazo[1,2-α]Pyridine-3,2-Indan]-2(3H)-One (ZSET1446/ST101) Treatment Rescues Olfactory Bulbectomy-Induced Memory Impairment by Activating Ca2+/Calmodulin Kinase II and Protein Kinase C in Mouse Hippocampus. Journal of Pharmacology and Experimental Therapeutics, 326, 127-134. http://dx.doi.org/10.1124/jpet.108.137471
[11]
Yamamoto, Y., Shioda, N., Han, F., Moriguchi, S. and Fukunaga, K. (2013) Novel Cognitive Enhancer ST101 Enhances Acetylcholine Release in Mouse Dorsal Hippocampus through T-Type Voltage-Gated Calcium Channel Stimulation. Journal of Pharmacological Sciences, 121, 212-226.
[12]
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R. (1999) Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science, 284, 143-147.
http://dx.doi.org/10.1126/science.284.5411.143
[13]
Urrutia, D.N., Caviedes, P., Mardones, R., Minguell, J.J., Vega-Letter, A.M. and Jofre, C.M. (2019) Comparative Study of the Neural Differentiation Capacity of Mesenchymal Stromal Cells from Different Tissue Sources: An Approach for Their Use in Neural Regeneration Therapies. PLoS ONE, 14, e0213032.
http://dx.doi.org/10.1371/journal.pone.0213032
[14]
Yun, H.M., Kim, H.S., Park, K.R., Shin, J.M., Kang, A.R., il Lee, K., Song, S., Kim, Y.B., Han, S.B., Chung, H.M. and Hong, J.T. (2013) Placenta-Derived Mesenchymal Stem Cells Improve Memory Dysfunction in an Aβ1-42-Infused Mouse Model of Alzheimer’s Disease. Cell Death & Disease, 4, e958.
http://dx.doi.org/10.1038/cddis.2013.490
[15]
Xie, Z.H., Liu, Z., Zhang, X.R., Yang, H., Wei, L.F., Wang, Y., Xu, S.L., Sun, L., Lai, C., Bi, J.Z. and Wang, X.Y. (2016) Wharton’s Jelly-Derived Mesenchymal Stem Cells Alleviate Memory Deficits and Reduce Amyloid-β Deposition in an APP/PS1 Transgenic Mouse Model. Clinical and Experimental Medicine, 16, 89-98.
http://dx.doi.org/10.1007/s10238-015-0375-0
[16]
Yabuki, Y., Matsuo, K., Izumi, H., Haga, H., Yoshida, T., Wakamori, M., Kakei, A., Sakimura, K., Fukuda, T. and Fukunaga, K. (2017) Pharmacological Properties of SAK3, a Novel T-Type Voltage-Gated Ca2+ Channel Enhancer. Neuropharmacology, 117, 1-13. http://dx.doi.org/10.1016/j.neuropharm.2017.01.011
[17]
Mehla, J., Lacoursiere, S.G., Lapointe, V., McNaughton, B.L., Sutherland, R.J., McDonald, R.J. and Mohajerani, M.H. (2019) Age-Dependent Behavioral and Biochemical Characterization of Single APP Knock-In Mouse (APPNL-G-F/NL-G-F) Model of Alzheimer’s Disease. Neurobiology of Aging, 75, 25-37.
http://dx.doi.org/10.1016/j.neurobiolaging.2018.10.026
[18]
Han, F., Shioda, N., Moriguchi, S., Qin, Z.H. and Fukunaga, K. (2008) The Vanadium (IV) Compound Rescues Septo-Hippocampal Cholinergic Neurons from Neurodegeneration in Olfactory Bulbectomized Mice. Neuroscience, 151, 671-679.
http://dx.doi.org/10.1016/j.neuroscience.2007.11.011
[19]
Keshtkar, S., Azarpira, N. and Ghahremani, M.H. (2018) Mesenchymal Stem Cell- Derived Extracellular Vesicles: Novel Frontiers in Regenerative Medicine. Stem Cell Research & Therapy, 9, Article No. 63. http://dx.doi.org/10.1186/s13287-018-0791-7
[20]
Katsuda, T., Tsuchiya, R., Kosaka, N., Yoshioka, Y., Takagaki, K., Oki, K., Takeshita, F., Sakai, Y., Kuroda, M. and Ochiya, T. (2013) Human Adipose Tissue-Derived Mesenchymal Stem Cells Secrete Functional Neprilysin-Bound Exosomes. Scientific Reports, 3, Article No. 1197. http://dx.doi.org/10.1038/srep01197
[21]
Reza-Zaldivar, E.E., Hernandez-Sapiens, M.A., Gutierrez-Mercado, Y.K., Sandoval-Avila, S., Gomez-Pinedo, U., Marquez-Aguirre, A.L., Vazquez-Mendez, E., Padilla-Camberos, E. and Canales-Aguirre, A.A. (2019) Mesenchymal Stem Cell-Derived Exosomes Promote Neurogenesis and Cognitive Function Recovery in a Mouse Model of Alzheimer’s Disease. Neural Regeneration Research, 14, 1626-1634.
http://dx.doi.org/10.4103/1673-5374.255978
[22]
Perl, D.P., Sugaya, H., Yoshioka, T., Kato, T., Taniguchi, Y., Kumagai, H., Hyodo, K., Ohneda, O., Yamazaki, M. and Mishima, H. (2018) Comparative Analysis of Cellular and Growth Factor Composition in Bone Marrow Aspirate Concentrate and Platelet-Rich Plasma. Bone Marrow Research, 2018, Article ID: 1549826.
[23]
Hofer, H.R. and Tuan, R.S. (2016) Secreted Trophic Factors of Mesenchymal Stem Cells Support Neurovascular and Musculoskeletal Therapies. Stem Cell Research & Therapy, 7, Article No. 131. http://dx.doi.org/10.1186/s13287-016-0394-0