全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

First-principles prediction of high oxygen-ion conductivity in trilanthanide gallates Ln3GaO6

DOI: https://doi.org/10.1080/14686996.2019.1578183

Full-Text   Cite this paper   Add to My Lib

Abstract:

ABSTRACT We systematically investigated trilanthanide gallates (Ln3GaO6) with the space group Cmc21 as oxygen-ion conductors using first-principles calculations. Six Ln3GaO6 (Ln = Nd, Gd, Tb, Ho, Dy, or Er) are both energetically and dynamically stable among 15 Ln3GaO6 compounds, which is consistent with previous experimental studies reporting successful syntheses of single phases. La3GaO6 and Lu3GaO6 may be metastable despite a slightly higher energy than those of competing reference states, as phonon calculations predict them to be dynamically stable. The formation and the migration barrier energies of an oxygen vacancy (VO) suggest that eight Ln3GaO6 (Ln = La, Nd, Gd, Tb, Ho, Dy, Er, or Lu) can act as oxygen-ion conductors based on VO. Ga plays a role of decreasing the distances between the oxygen sites of Ln3GaO6 compared with those of Ln2O3 so that a VO migrates easier with a reduced migration barrier energy. Larger oxygen-ion diffusivities and lower migration barrier energies of VO for the eight Ln3GaO6 are obtained for smaller atomic numbers of Ln having larger radii of Ln3+. Their oxygen-ion conductivities at 1000 K are predicted to have a similar order of magnitude to that of yttria-stabilized zirconia. Graphical abstrac

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133