全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

A scene recognition algorithm based on deep residual network

DOI: https://doi.org/10.1080/21642583.2019.1647576

Full-Text   Cite this paper   Add to My Lib

Abstract:

Scene recognition is quite important in the field of robotics and computer vision. Aiming at providing high performance and universality of feature extraction, a convolutional neural network-based scene recognition model entitled Scene-RecNet is proposed. To reduce parameter space and improve the feature quality, deep residual network is introduced as the feature extractor. A feature adjustment layer composed of a convolutional layer and a fully connected layer is added after the feature extractor to further synthesize and compress the extracted features. Migration learning-based ‘pre-training and fine-tuning’ mode is used to train Scene-RecNet. The feature extractor is pre-trained by ImageNet, and the overall network performance is fine-tuned on specific data sets. Experiments show that comparing with other algorithms, the features obtained by Scene-RecNet have high generality and robustness, and Scene-RecNet can provide better scene classification accuracy rate

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133