全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Glycol Chitosan-Docosahexaenoic Acid Liposomes for Drug Delivery: Synergistic Effect of Doxorubicin-Rapamycin in Drug-Resistant Breast Cancer

DOI: https://doi.org/10.3390/md17100581

Full-Text   Cite this paper   Add to My Lib

Abstract:

Marine ecosystems are the most prevalent ecosystems on the planet, providing a diversity of living organisms and resources. The development of nanotechnology may provide solutions for utilizing these thousands of potential compounds as marine pharmaceuticals. Here, we designed a liposomal glycol chitosan formulation to load both doxorubicin (DOX) and rapamycin (RAPA), and then evaluated its therapeutic potential in a prepared drug-resistant cell model. We explored the stability of the drug delivery system by changing the physiological conditions and characterized its physicochemical properties. The electrostatic complexation between DOX-glycol chitosan and docosahexaenoic acid RAPA-liposomes (GC-DOX/RAPA ω-liposomes) was precisely regulated, resulting in particle size of 131.3 nm and zeta potential of ?14.5 mV. The well-characterized structure of GC-DOX/RAPA ω-liposomes led to high loading efficiencies of 4.1% for DOX and 6.2% for RAPA. Also, GC-DOX/RAPA ω-liposomes exhibited high colloidal stability under physiological conditions and synergistic anti-cancer effects on DOX-resistant MDA-MB-231 cells, while showing pH-sensitive drug release behavior. Our results provided a viable example of marine pharmaceuticals with therapeutic potential for treating drug-resistant tumors using an efficient and safe drug delivery system. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133