全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Remote Sensing of Wildfire Using a Small Unmanned Aerial System: Post-Fire Mapping, Vegetation Recovery and Damage Analysis in Grand Bay, Mississippi/Alabama, USA

DOI: https://doi.org/10.3390/drones3020043

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wildfires can be beneficial for native vegetation. However, wildfires can impact property values, human safety, and ecosystem function. Resource managers require safe, easy to use, timely, and cost-effective methods for quantifying wildfire damage and regeneration. In this work, we demonstrate an approach using an unmanned aerial system (UAS) equipped with a MicaSense RedEdge multispectral sensor to classify and estimate wildfire damage in a coastal marsh. We collected approximately 7.2 km 2 of five-band multispectral imagery after a wildfire event in February 2016, which was used to create a photogrammetry-based digital surface model (DSM) and orthomosaic for object-based classification analysis. Airborne light detection and ranging data were used to validate the accuracy of the DSM. Four-band airborne imagery from pre- and post-fire were used to estimate pre-fire health, post-fire damage, and track the vegetation recovery process. Immediate and long-term post-fire classifications, area, and volume of burned regions were produced to track the revegetation progress. The UAS-based classification produced from normalized difference vegetation index and DSM was compared to the Landsat-based Burned Area Reflectance Classification. Experimental results show the potential of using UAS and the presented approach compared to satellite-based mapping in terms of classification accuracies, turnaround time, and spatial and temporal resolutions. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133