全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Novel Detection Algorithm to Identify False Data Injection Attacks on Power System State Estimation

DOI: https://doi.org/10.3390/en12112209

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper provides a novel bad data detection processor to identify false data injection attacks (FDIAs) on the power system state estimation. The attackers are able to alter the result of the state estimation virtually intending to change the result of the state estimation without being detected by the bad data processors. However, using a specific configuration of an artificial neural network (ANN), named nonlinear autoregressive exogenous (NARX), can help to identify the injected bad data in state estimation. Considering the high correlation between power system measurements as well as state variables, the proposed neural network-based approach is feasible to detect any potential FDIAs. Two different strategies of FDIAs have been simulated in power system state estimation using IEEE standard 14-bus test system for evaluating the performance of the proposed method. The results indicate that the proposed bad data detection processor is able to detect the false injected data launched into the system accurately. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133