全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

The Connection between Bayesian Inference and Information Theory for Model Selection, Information Gain and Experimental Design

DOI: https://doi.org/10.3390/e21111081

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show a link between Bayesian inference and information theory that is useful for model selection, assessment of information entropy and experimental design. We align Bayesian model evidence (BME) with relative entropy and cross entropy in order to simplify computations using prior-based (Monte Carlo) or posterior-based (Markov chain Monte Carlo) BME estimates. On the one hand, we demonstrate how Bayesian model selection can profit from information theory to estimate BME values via posterior-based techniques. Hence, we use various assumptions including relations to several information criteria. On the other hand, we demonstrate how relative entropy can profit from BME to assess information entropy during Bayesian updating and to assess utility in Bayesian experimental design. Specifically, we emphasize that relative entropy can be computed avoiding unnecessary multidimensional integration from both prior and posterior-based sampling techniques. Prior-based computation does not require any assumptions, however posterior-based estimates require at least one assumption. We illustrate the performance of the discussed estimates of BME, information entropy and experiment utility using a transparent, non-linear example. The multivariate Gaussian posterior estimate includes least assumptions and shows the best performance for BME estimation, information entropy and experiment utility from posterior-based sampling

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133