全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Crystal Structure of IlvC, a Ketol-Acid Reductoisomerase, from Streptococcus Pneumoniae

DOI: https://doi.org/10.3390/cryst9110551

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biosynthesis of branched-chain amino acids (BCAAs), including isoleucine, leucine and valine, is required for survival and virulence of a bacterial pathogen such as Streptococcus pneumoniae. IlvC, a ketol-acid reductoisomerase (E.C. 1.1.1.86) with NADP(H) and Mg 2+ as cofactors from the pathogenic Streptococcus pneumoniae (SpIlvC), catalyzes the second step in the BCAA biosynthetic pathway. To elucidate the structural basis for the IlvC-mediated reaction, we determined the crystal structure of SpIlvC at 1.69 ? resolution. The crystal structure of SpIlvC contains an asymmetric dimer in which one subunit is in apo-form and the other in NADP(H) and Mg 2+-bound form. Crystallographic analysis combined with an activity assay and small-angle X-ray scattering suggested that SpIlvC retains dimeric arrangement in solution and that D83 in the NADP(H) binding site and E195 in the Mg 2+ binding site are the most critical in the catalytic activity of SpIlvC. Crystal structures of SpIlvC mutants (R49E, D83G, D191G and E195S) revealed local conformational changes only in the NADP(H) binding site. Taken together, our results establish the molecular mechanism for understanding functions of SpIlvC in pneumococcal growth and virulence. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133