全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Feedback-Based Integration of the Whole Process of Data Anonymization in a Graphical Interface

DOI: https://doi.org/10.3390/a12090191

Full-Text   Cite this paper   Add to My Lib

Abstract:

The interactive, web-based point-and-click application presented in this article, allows anonymizing data without any knowledge in a programming language. Anonymization in data mining, but creating safe, anonymized data is by no means a trivial task. Both the methodological issues as well as know-how from subject matter specialists should be taken into account when anonymizing data. Even though specialized software such as sdcMicro exists, it is often difficult for nonexperts in a particular software and without programming skills to actually anonymize datasets without an appropriate app. The presented app is not restricted to apply disclosure limitation techniques but rather facilitates the entire anonymization process. This interface allows uploading data to the system, modifying them and to create an object defining the disclosure scenario. Once such a statistical disclosure control (SDC) problem has been defined, users can apply anonymization techniques to this object and get instant feedback on the impact on risk and data utility after SDC methods have been applied. Additional features, such as an Undo Button, the possibility to export the anonymized dataset or the required code for reproducibility reasons, as well its interactive features, make it convenient both for experts and nonexperts in R—the free software environment for statistical computing and graphics—to protect a dataset using this app. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133