全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Real-Time Behaviour Planning and Highway Situation Analysis Concept with Scenario Classification and Risk Estimation for Autonomous Vehicles

DOI: https://doi.org/10.3390/designs3010004

Full-Text   Cite this paper   Add to My Lib

Abstract:

The development of autonomous vehicles is one of the most active research areas in the automotive industry. The objective of this study is to present a concept for analysing a vehicle’s current situation and a decision-making algorithm which determines an optimal and safe series of manoeuvres to be executed. Our work focuses on a machine learning-based approach by using neural networks for risk estimation, comparing different classification algorithms for traffic density estimation and using probabilistic and decision networks for behaviour planning. A situation analysis is carried out by a traffic density classifier module and a risk estimation algorithm, which predicts risks in a discrete manoeuvre space. For real-time operation, we applied a neural network approach, which approximates the results of the algorithm we used as a ground truth, and a labelling solution for the network’s training data. For the classification of the current traffic density, we used a support vector machine. The situation analysis provides input for the decision making. For this task, we applied probabilistic networks. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133