全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Automated Progress Controlling and Monitoring Using Daily Site Images and Building Information Modelling

DOI: https://doi.org/10.3390/buildings9030070

Full-Text   Cite this paper   Add to My Lib

Abstract:

This research presents a novel method for automated construction progress monitoring. Using the proposed method, an accurate and complete 3D point cloud is generated for automatic outdoor and indoor progress monitoring throughout the project duration. In this method, Structured-from-Motion (SFM) and Multi-View-Stereo (MVS) algorithms coupled with photogrammetric principles for the coded targets’ detection are exploited to generate as-built 3D point clouds. The coded targets are utilized to automatically resolve the scale and increase the accuracy of the point cloud generated using SFM and MVS methods. Having generated the point cloud, the CAD model is generated from the as-built point cloud and compared with the as-planned model. Finally, the quantity of the performed work is determined in two real case study projects. The proposed method is compared to the Structured-from-Motion (SFM)/Clustering Multi-Views Stereo (CMVS)/Patch-based Multi-View Stereo (PMVS) algorithm, as a common method for generating 3D point cloud models. The proposed photogrammetric Multi-View Stereo method reveals an accuracy of around 99 percent and the generated noises are less compared to the SFM/CMVS/PMVS algorithm. It is observed that the proposed method has extensively improved the accuracy of generated points cloud compared to the SFM/CMVS/PMVS algorithm. It is believed that the proposed method may present a novel and robust tool for automated progress monitoring in construction projects. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133