全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multimode Decomposition and Wavelet Threshold Denoising of Mold Level Based on Mutual Information Entropy

DOI: https://doi.org/10.3390/e21020202

Full-Text   Cite this paper   Add to My Lib

Abstract:

The continuous casting process is a continuous, complex phase transition process. The noise components of the continuous casting process are complex, the model is difficult to establish, and it is difficult to separate the noise and clear signals effectively. Owing to these demerits, a hybrid algorithm combining Variational Mode Decomposition (VMD) and Wavelet Threshold denoising (WTD) is proposed, which involves multiscale resolution and adaptive features. First of all, the original signal is decomposed into several Intrinsic Mode Functions (IMFs) by Empirical Mode Decomposition (EMD), and the model parameter K of the VMD is obtained by analyzing the EMD results. Then, the original signal is decomposed by VMD based on the number of IMFs K, and the Mutual Information Entropy (MIE) between IMFs is calculated to identify the noise dominant component and the information dominant component. Next, the noise dominant component is denoised by WTD. Finally, the denoised noise dominant component and all information dominant components are reconstructed to obtain the denoised signal. In this paper, a comprehensive comparative analysis of EMD, Ensemble Empirical Mode Decomposition (EEMD), Complementary Empirical Mode Decomposition (CEEMD), EMD-WTD, Empirical Wavelet Transform (EWT), WTD, VMD, and VMD-WTD is carried out, and the denoising performance of the various methods is evaluated from four perspectives. The experimental results show that the hybrid algorithm proposed in this paper has a better denoising effect than traditional methods and can effectively separate noise and clear signals. The proposed denoising algorithm is shown to be able to effectively recognize different cast speeds. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133