全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Application of Manifold Learning in Global Shape Descriptors

DOI: https://doi.org/10.3390/a12080171

Full-Text   Cite this paper   Add to My Lib

Abstract:

With the rapid expansion of applied 3D computational vision, shape descriptors have become increasingly important for a wide variety of applications and objects from molecules to planets. Appropriate shape descriptors are critical for accurate (and efficient) shape retrieval and 3D model classification. Several spectral-based shape descriptors have been introduced by solving various physical equations over a 3D surface model. In this paper, for the first time, we incorporate a specific manifold learning technique, introduced in statistics and machine learning, to develop a global, spectral-based shape descriptor in the computer graphics domain. The proposed descriptor utilizes the Laplacian Eigenmap technique in which the Laplacian eigenvalue problem is discretized using an exponential weighting scheme. As a result, our descriptor eliminates the limitations tied to the existing spectral descriptors, namely dependency on triangular mesh representation and high intra-class quality of 3D models. We also present a straightforward normalization method to obtain a scale-invariant and noise-resistant descriptor. The extensive experiments performed in this study using two standard 3D shape benchmarks—high-resolution TOSCA and McGill datasets—demonstrate that the present contribution provides a highly discriminative and robust shape descriptor under the presence of a high level of noise, random scale variations, and low sampling rate, in addition to the known isometric-invariance property of the Laplace–Beltrami operator. The proposed method significantly outperforms state-of-the-art spectral descriptors in shape retrieval and classification. The proposed descriptor is limited to closed manifolds due to its inherited inability to accurately handle manifolds with boundaries. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133