全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

A Novel Monarch Butterfly Optimization with Global Position Updating Operator for Large-Scale 0-1 Knapsack Problems

DOI: https://doi.org/10.3390/math7111056

Full-Text   Cite this paper   Add to My Lib

Abstract:

As a significant subset of the family of discrete optimization problems, the 0-1 knapsack problem (0-1 KP) has received considerable attention among the relevant researchers. The monarch butterfly optimization (MBO) is a recent metaheuristic algorithm inspired by the migration behavior of monarch butterflies. The original MBO is proposed to solve continuous optimization problems. This paper presents a novel monarch butterfly optimization with a global position updating operator (GMBO), which can address 0-1 KP known as an NP-complete problem. The global position updating operator is incorporated to help all the monarch butterflies rapidly move towards the global best position. Moreover, a dichotomy encoding scheme is adopted to represent monarch butterflies for solving 0-1 KP. In addition, a specific two-stage repair operator is used to repair the infeasible solutions and further optimize the feasible solutions. Finally, Orthogonal Design (OD) is employed in order to find the most suitable parameters. Two sets of low-dimensional 0-1 KP instances and three kinds of 15 high-dimensional 0-1 KP instances are used to verify the ability of the proposed GMBO. An extensive comparative study of GMBO with five classical and two state-of-the-art algorithms is carried out. The experimental results clearly indicate that GMBO can achieve better solutions on almost all the 0-1 KP instances and significantly outperforms the rest

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133