全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Econophysics and Fractional Calculus: Einstein’s Evolution Equation, the Fractal Market Hypothesis, Trend Analysis and Future Price Prediction

DOI: https://doi.org/10.3390/math7111057

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper examines a range of results that can be derived from Einstein’s evolution equation focusing on the effect of introducing a Lévy distribution into the evolution equation. In this context, we examine the derivation (derived exclusively from the evolution equation) of the classical and fractional diffusion equations, the classical and generalised Kolmogorov–Feller equations, the evolution of self-affine stochastic fields through the fractional diffusion equation, the fractional Poisson equation (for the time independent case), and, a derivation of the Lyapunov exponent and volatility. In this way, we provide a collection of results (which includes the derivation of certain fractional partial differential equations) that are fundamental to the stochastic modelling associated with elastic scattering problems obtained under a unifying theme, i.e., Einstein’s evolution equation. This includes an analysis of stochastic fields governed by a symmetric (zero-mean) Gaussian distribution, a Lévy distribution characterised by the Lévy index γ ∈ [ 0 , 2 ] and the derivation of two impulse response functions for each case. The relationship between non-Gaussian distributions and fractional calculus is examined and applications to financial forecasting under the fractal market hypothesis considered, the reader being provided with example software functions (written in MATLAB) so that the results presented may be reproduced and/or further investigated. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133