全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Three-Dimensional Hydro-Magnetic Flow Arising in a Long Porous Slider and a Circular Porous Slider with Velocity Slip

DOI: https://doi.org/10.3390/math7080748

Full-Text   Cite this paper   Add to My Lib

Abstract:

The current research explores the injection of a viscous fluid through a moving flat plate with a transverse uniform magneto-hydrodynamic (MHD) flow field to reduce sliding drag. Two cases of velocity slip between the slider and the ground are studied: a long slider and a circular slider. Solving the porous slider problem is applicable to fluid-cushioned porous sliders, which are useful in reducing the frictional resistance of moving bodies. By using a similarity transformation, three dimensional Navier–Stokes equations are converted into coupled nonlinear ordinary differential equations. The resulting nonlinear boundary value problem was solved analytically using the homotopy analysis method (HAM). The HAM provided a fast convergent series solution, showing that this method is efficient, accurate, and has many advantages over the other existing methods. Solutions were obtained for the different values of Reynolds numbers (R), velocity slip, and magnetic fields. It was found that surface slip and Reynolds number had substantial influence on the lift and drag of the long and the circular sliders. Moreover, the effects of the applied magnetic field on the velocity components, load-carrying capacity, and friction force are discussed in detail with the aid of graphs and tables. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133