全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microstructure and Phase Composition of Yttria-Stabilized Zirconia Nanofibers Prepared by High-Temperature Calcination of Electrospun Zirconium Acetylacetonate/Yttrium Nitrate/Polyacrylonitrile Fibers

DOI: https://doi.org/10.3390/fib7100082

Full-Text   Cite this paper   Add to My Lib

Abstract:

For the first time, dense nanofibers of yttria-stabilized tetragonal zirconia with diameter of ca. 140 nm were prepared by calcination of electrospun zirconium acetylacetonate/yttrium nitrate/polyacrylonitrile fibers at 1100–1300 °C. Ceramic filaments were characterized by scanning electron microscopy, X-ray diffractometry, and nitrogen adsorption. With a rise in the calcination temperature from 1100 to 1300 °C, the fine-grain structure of the nanofibers transformed to coarse-grain ones with the grain size equal to the fiber diameter. It was revealed that fully tetragonal nanofibrous zirconia may be obtained at Y 2O 3 concentrations in the range of 2–3 mol% at all used calcination temperatures. The addition of 2–3 mol% yttria to zirconia inhibited ZrO 2 grain growth, preventing nanofibers’ destruction at high calcination temperatures. Synthesized well-sintered, non-porous, yttria-stabilized tetragonal zirconia nanofibers can be considered as a promising material for composites’ reinforcement, including composites with ceramic matrix. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133