全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

A Novel Method of Near-Miss Event Detection with Software Defined RADAR in Improving Railyard Safety

DOI: https://doi.org/10.3390/safety5030055

Full-Text   Cite this paper   Add to My Lib

Abstract:

Railyards are one of the most challenging and complex workplace environments in any industry. Railyard workers are constantly surrounded by dangerous moving objects, in a noisy environment where distractions can easily result in accidents or casualties. Throughout the years, yards have been contributing 20–30% of the total accidents that happen in railroads. Monitoring the railyard workspace to keep personnel safe from falls, slips, being struck by large object, etc. and preventing fatal accidents can be particularly challenging due to the sheer number of factors involved, such as the need to protect a large geographical space, the inherent dynamicity of the situation workers find themselves in, the presence of heavy rolling stock, blind spots, uneven surfaces and a plethora of trip hazards, just to name a few. Since workers spend the majority of time outdoors, weather conditions also play an important role, i.e., snow, fog, rain, etc. Conventional sensor deployments in yards thus fail to consistently monitor this workspace. In this paper, the authors have identified these challenges and addressed them with a novel detection method using a multi-sensor approach. They have also proposed novel algorithms to detect, classify and remotely monitor Employees-on-Duty (EoDs) without hindering real-time decision-making of the EoD. In the proposed solution, the authors have used a fast spherical-to-rectilinear transform algorithm on fish-eye images to monitor a wide area and to address blindspots in visual monitoring, and employed Software-Defined RADAR (SDRADAR) to address the low-visibility problem. The sensors manage to monitor the workspace for 100 m with blind detection and classification. These algorithms have successfully maintained real-time processing delay of ≤0.1 s between consecutive frames for both SDRADAR and visual processing. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133