全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Post-Fire Effect Modeling for the Permafrost Zone in Central Siberia on the Basis of Remote Sensing Data?

DOI: https://doi.org/10.3390/ECRS-3-06202

Full-Text   Cite this paper   Add to My Lib

Abstract:

The increasing trend of larch forests burning in the permafrost zone (60–65° N, 95–105° E) is observed in Siberia. Up to 10–15% of entire larch forests were damaged by wildfire during the last two decades. Current research analysed the reflectance and thermal anomalies of the post-pyrogenic sites under the conditions of permafrost. Studies are based on a long-term Terra and Aqua/MODIS (Moderate Resolution Imaging Spectroradiometer) survey for 2006–2018. We used IR thermal range data of 10.780–11.280 microns (MOD11A1 product) and we evaluated the Normalized Difference Vegetation Index (NDVI) from MOD09GQ product as well. The averaged temperature and NDVI dynamics were investigated in total for 50 post-fire plots under different stages of succession (1, 2, 5 and 10 years after burning) in comparison with non-disturbed vegetation cover sites under the same conditions. We recorded higher temperatures (20–47% higher than average background value) and lower NDVI values (9–63% lower than non-disturbed vegetation cover) persisting for the first 10 years after the fire. Under conditions of natural restoration, thermal anomalies of the ground cover remained significant for more than 15 years, which was reflected in long-term satellite data and confirmed by ground-based measurements. To estimate the impact of thermal anomalies on soil temperature and thawed layer depth we used the Stefan’s solution for the thermal conductivity equation. According to the results of numerical simulation, depth of the seasonal thawed layer could increase more than 20% in comparison with the average statistical norm under the conditions of excessive heating of the underlying layers. This is a significant factor in the stability of Siberian permafrost ecosystems requiring long-term monitoring

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133